The Masatoshi Nei Lecture

SMBE members attending the 1999 Business Meeting in Brisbane, Australia, voted to establish the Masatoshi Nei Lecture to be delivered by the President at annual Society meetings.

Masatoshi Nei (根井正利 Nei Masatoshi) is Evan Pugh Professor of Biology at Pennsylvania State University and Director of the Institute of Molecular Evolutionary Genetics since 1990. He was born in 1931 in Miyazaki Prefecture, on Kyūshū Island, Japan. He was associate professor and professor of biology at Brown University from 1969 to 1972 and professor of population genetics at the Center for Demographic and Population Genetics, University of Texas at Houston, from 1972 to 1990. He is a theoretical population geneticist and evolutionary biologist. Acting alone or working with his students, he has continuously developed new statistical theories of molecular evolution taking into account frontier knowledge of molecular biology. He has also made several conceptual developments of evolutionary theory.

Theoretical Studies

He was the first to show mathematically that in the presence of gene interaction, natural selection always tends to enhance the linkage intensity between genetic loci or maintain the same linkage relationship. He then observed that the average recombination value per genome is generally lower in higher organisms than in lower organisms and attributed this observation to his finding of linkage modification by natural selection. Recent molecular data indicate that many sets of interacting genes such as Hox genes, immunoglobulin genes, and histone genes often exist as gene clusters for a long evolutionary time. This observation can also be explained by his principle of maintenance of linkage of interacting genes. He also showed that, unlike R. A. Fisher’s argument, deleterious mutations can accumulate rather quickly on the Y chromosome or duplicate genes in finite populations. In 1969, considering the rates of amino acid substitution, gene duplication, and gene inactivation, he predicted that higher organisms contain a large number of duplicate genes and nonfunctional genes (now called pseudogenes). This prediction was ignored for many years but later vindicated when many multigene families and pseudogenes were discovered in the 1980s. His notable contribution in the early 1970s is the proposal of a new measure of genetic distance (Nei’s distance) between populations and its use for studying evolutionary relationships of populations or closely related species. Later, he developed another distance measure called DA, which is appropriate for finding the topology of a phylogenetic tree. He also developed statistics of measuring the extent of population differentiation for any types of mating system using GST measure. In 1975, he and collaborators presented a mathematical formulation of population bottleneck effects and clarified the genetic meaning of bottleneck effects. In 1979, he developed a mathematical theory for studying genetic variation in terms of restriction enzymes.[10] In collaboration with Takeo Maruyama and Chung-I Wu, he also developed a theory of evolution of reproductive isolation using various models of incompatibility of genes between two isolated populations.

Protein polymorphism and neutral theory

In the early 1960s and 1970s, there was a great controversy over the mechanism of protein evolution and the maintenance of protein polymorphism. Nei and his students developed various statistical methods for testing the neutral theory of evolution by using polymorphism data. Their analysis of the allele frequency distribution, the relationship between average heterozygosity and protein divergence between species, etc., could not reject the null hypothesis of neutral evolution though a large amount of data for various genes from diverse groups of species were examined. The only exception was the major histocompatibility complex (MHC) loci, which show an extraordinarily high degree of polymorphism. He also showed that pseudogenes may represent a paradigm of neutral evolution without any selection.

Human evolution

Using his genetic distance theory, he and A. K. Roychoudhury showed that the genetic variation between Europeans, Asians, and Africans is only about 11 percent of the total genetic variation of the human population, which was in agreement with the results published by R. C. Lewontin in the same year. Nei and Roychoudhury then estimated that Europeans and Asians diverged about 55,000 years ago and these two populations diverged from Africans about 115,000 years ago. This conclusion was supported by many later studies using larger numbers of genes and populations, and the estimates are still widely used. This study was a forerunner of the out of Africa theory of human origin by Allan Wilson.

Molecular phylogenetics

Around 1980, Nei and his students initiated a study of inference of phylogenetic trees based on distance data. In 1985 they developed a statistical method for testing the accuracy of a phylogenetic tree by examining the statistical significance of interior branch lengths. They then developed the neighbor-joining and minimum-evolution methods of tree inference. They also developed statistical methods for estimating evolutionary times from molecular phylogenies. In collaboration with Sudhir Kumar and Koichiro Tamura, he developed a widely used computer program package for phylogenetic analysis called MEGA.

MHC loci and positive Darwinian selection

Nei’s group invented a statistical method for detecting positive Darwinian selection by comparing the numbers of synonymous nucleotide substitutions and nonsynonymous nucleotide substitutions. Applying this method, they showed that the exceptionally high degree of sequence polymorphism at MHC loci is caused by overdominant selection.[19] Although various statistical methods for this test have been later developed, their original methods are still widely used. He maintains that the Bayesian method of inferring positively selected amino acid sites tends to give false-positives and experimental tests are necessary for confirmation of these sites.

Birth-and-death evolution and neomutationism

Nei and his students studied the evolutionary patterns of a large number of multigene families and showed that they generally evolve following the model of a birth-and-death process.In some gene families this process is very fast and caused by random events of gene duplication and gene deletion and generates genomic drift of gene copy number. Nei has long maintained the view that the driving force of evolution is mutation including any types of genetic changes and natural selection is merely a force eliminating less fit genotypes (neomutationism). He conducted statistical analyses of the evolution of genes controlling phenotypic characters such as olfactory reception and obtained evidence supporting his neomutationism.

New journal, new society, and students

He founded the journal Molecular Biology and Evolution in 1983 and the Society for Molecular Biology and Evolution in 1993, together with Walter M. Fitch. He also trained many graduate students and postdoctorals who have become leading figures in molecular evolution including Margaret Kidwell, Wen-Hsiung Li, Ranajit Chakraborty, Shozo Yokoyama, Aravinda Chakravarti, Dan Graur, Fumio Tajima, Chung-I Wu, Naoyuki Takahata, Takashi Gojobori, Pekka Pamilo, Austin Hughes, Andrey Rzhetsky, Jianzhi (George) Zhang, and Sudhir Kumar.


Year Title
1977 Japan Society of Human Genetics Award
1990 Fellow, American Academy of Arts and Sciences
1990 Kihara Prize, Genetics Society of Japan
1997 Member, National Academy of Sciences, USA
2002 International Prize for Biology, Japan Society of the Promotion of Sciences
2003 Barbara Bowman Award, Texas Geneticist Society
2006 Thomas Hunt Morgan Medal, Genetics Society of America

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution


Fat-Rich Diets and Adaptation Among Indigenous Siberian Populations




Mate Selection Found to Evolve from Response to Flower Odors





















Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker



two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in nonrenewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation.



GBE | Most Read

Genome Biology & Evolution

RAD-Seq Reveals Patterns of Additive Polygenic Variation Caused by Spatially-Varying Selection in the American Eel ( Anguilla rostrata )


The American Eel (Anguilla rostrata) has an exceptional life cycle characterized by panmictic reproduction at the species scale, random dispersal, and selection in a highly heterogeneous habitat extending from subtropical to subarctic latitudes. The genetic consequences of spatially-varying selection in this species have been investigated for decades, revealing subtle clines in allele frequency at a few loci that contrast with complete panmixia on the vast majority of the genome. Because reproduction homogenizes allele frequencies every generation, sampling size, and genomic coverage are critical to reach sufficient power to detect selected loci in this context. Here, we used a total of 710 individuals from 12 sites and 12,098 high-quality single nucleotide polymorphisms to re-evaluate the extent to which local selection affects the spatial distribution of genetic diversity in this species. We used environmental association methods to identify markers under spatially-varying selection, which indicated that selection affects ∼1.5% of the genome. We then evaluated the extent to which candidate markers collectively vary with environmental factors using additive polygenic scores. We found significant correlations between polygenic scores and latitude, longitude and temperature which are consistent with polygenic selection acting against maladapted genotypes in different habitats occupied by eels throughout their range of distribution. Gene functions associated with outlier markers were significantly enriched for the insulin signaling pathway, indicating that the trade-offs inherent to occupying such a large distribution range involve the regulation of metabolism. Overall, this study highlights the potential of the additive polygenic scores approach in detecting selective effects in a complex environment.

Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing


Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa.

Legionella Becoming a Mutualist: Adaptive Processes Shaping the Genome of Symbiont in the Louse Polyplax serrata


Legionellaceae are intracellular bacteria known as important human pathogens. In the environment, they are mainly found in biofilms associated with amoebas. In contrast to the gammaproteobacterial family Enterobacteriaceae, which established a broad spectrum of symbioses with many insect taxa, the only instance of legionella-like symbiont has been reported from lice of the genus Polyplax. Here, we sequenced the complete genome of this symbiont and compared its main characteristics to other Legionella species and insect symbionts. Based on rigorous multigene phylogenetic analyses, we confirm this bacterium as a member of the genus Legionella and propose the name Candidatus Legionella polyplacis, sp.n. We show that the genome of Ca. Legionella polyplacis underwent massive degeneration, including considerable size reduction (529.746 bp, 484 protein coding genes) and a severe decrease in GC content (23%). We identify several possible constraints underlying the evolution of this bacterium. On one hand, Ca. Legionella polyplacis and the louse symbionts Riesia and Puchtella experienced convergent evolution, perhaps due to adaptation to similar hosts. On the other hand, some metabolic differences are likely to reflect different phylogenetic positions of the symbionts and hence availability of particular metabolic function in the ancestor. This is exemplified by different arrangements of thiamine metabolism in Ca. Legionella polyplacis and Riesia. Finally, horizontal gene transfer is shown to play a significant role in the adaptive and diversification process. Particularly, we show that Ca. L. polyplacis horizontally acquired a complete biotin operon (bioADCHFB) that likely assisted this bacterium when becoming an obligate mutualist.

The Diversification of Zika Virus: Are There Two Distinct Lineages?


Zika virus (ZIKV) has caused explosive epidemics in the Pacific and the Americas, posing a serious threat to public health. Conventional opinion advocates that ZIKV evolved into two distinct lineages, namely, African and Asian. Descendants of this latter lineage dispersed globally causing major epidemics. However, based on shared amino acid replacements and phylogenetic analyses, it was recently contentiously proposed that the Asian lineage was a direct descendant of the African lineage. To address this contentious issue, we reconstructed a phylogenetic tree of ZIKV using the method based on shared amino acid replacements and found that ZIKV evolved into two distinct lineages. This supports the conventional phylogenetic divergence pattern of ZIKV. Evidence of recombination and sequencing errors was identified among the large collection of ZIKV. As such problematic sequences could confound the phylogenetic analyses, they were removed. Bayesian phylogenetic analyses using the improved sequence data enabled estimates for the divergence time in the past of the African and Asian lineages of ∼180 years ago. Moreover, we found that the Asian lineage viruses did not evolve at an elevated rate. Our findings provide additional support for the conventional opinion that the Asian lineage of ZIKV diverged from the African lineage.