Young Investigator Travel Award

Attending a major conference is particularly important for young researchers because it allows them to present their work to an expert audience and gives them the opportunity to make useful contacts. However, SMBE recognizes that travel funds may not be available at this critical time. Postdoctoral researchers and graduate students may apply for travel awards to attend the annual SMBE meeting. Awardees are granted up to US $1500 for travel within the same continent, and up to US $2000 for long-haul travel. Reimbursements are processed after the meeting and awardees may claim travel, accommodation and meeting registration expenses. 

When you submit your abstract for the annual meeting indicate that you wish to apply for this award.
Online registration and the abstract submission system for the 2016 SMBE meeting can be found HERE.
When you submit your abstract for the annual meeting indicate that you wish to apply for this award.
Online registration and the abstract submission system for the 2016 SMBE meeting can be found HER

Award Information

Eligibility: Members of SMBE, who are either graduate students (awarded a primary degree and enrolled full-time for a post-graduate degree – Masters, Doctorate or Higher-Diploma) or postdoctoral researchers are eligible to apply. A candidate for the award must be a member of the Society at the time of application at least a month before the first day of the annual meeting.

 

Application: Via the abstract submission system for the annual meeting for which the award applies.

The application requires:

  • An abstract (250 word max) for your proposed presentation.
  • A one page expanded summary of the research, including an explanation of the broad significance or importance of the work.  
  • A Curriculum Vitae

Process:  The awardees are determined after review of application materials by one or more committees that will include at least one member of SMBE Council.  The selection committee pays particular attention to enhancing geographical and gender diversity.

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

2017-05-17

2017-05-17

2017-05-17

2017-05-17

2017-05-17

2017-05-17

2017-05-16

2017-03-22

2017-03-20

2017-03-16

2017-03-08

Comparison of Fused and Segregated Globin Gene Clusters

2017-03-07

2017-03-02

2017-02-25

2017-02-25

2017-02-25

2017-02-25

2017-02-25

2017-02-25

2017-02-25

2017-02-25

2017-02-25

Pan troglodytes (P. t.) troglodytes and P. t. verus.

Command-Line Toolkits for Manipulating Sequences, Alignments, and Phylogenetic Trees

2017-02-25

2017-02-21

Chaetoceros, Cyclotella, Discostella, or Nitzschia. It has been speculated that serial replacement of diatom-derived chloroplasts by other diatoms has caused this diversity of chloroplasts. Although previous work suggested that the endosymbionts of Nitzschia origin might not be monophyletic, this has not been seriously investigated. To infer the number of replacements of diatom-derived chloroplasts in dinotoms, we analyzed the phylogenetic affinities of 14 species of dinotoms based on the endosymbiotic rbcL gene and SSU rDNA, and the host SSU rDNA. Resultant phylogenetic trees revealed that six species of Nitzschia were taken up by eight marine dinoflagellate species. Our phylogenies also indicate that four separate diatom species belonging to three genera were incorporated into the five freshwater dinotoms. Particular attention was paid to two crucially closely related species, Durinskia capensis and a novel species, D. kwazulunatalensis, because they possess distantly related Nitzschia species. This study clarified that any of a total of at least 11 diatom species in five genera are employed as an endosymbiont by 14 dinotoms, which infers a more frequent replacement of endosymbionts in the world of dinotoms than previously envisaged.

2017-02-21

2017-02-21

2017-01-12

GBE | Most Read

Genome Biology & Evolution

Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants

2017-05-01

<span class="paragraphSection">Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.</span>