Joseph Felsenstein is Professor in the Departments of Genome Sciences and Biology and Adjunct Professor in the Departments of Computer Science and Statistics at the University of Washington in Seattle. He is best known for his work on phylogenetic inference, and is the author of Inferring Phylogenies, and principal author and distributor of the package of phylogenetic inference programs called PHYLIP, and is currently serving as the President of the Society for Molecular Biology & Evolution.

You can reach Joe at

James McInerney is the principle investigator of the Bioinformatics and Molecular Evolution Laboratories at NUI Maynooth. He was one of the founding directors of the Irish Centre for High End Computing, an Associate Editor of Molecular Biology and Evolution, Biology Direct, and Journal of Experimental Zoology, and is currently serving as the Secretary for the Society for Molecular Biology and Evolution.

You can reach James at

Juliette de Meaux is interested in the molecular basis of Darwinian adaptation in natural plant systems. Her works combines the approaches of population, quantitative and molecular genetics to dissect the underpinning of adaptive changes. She completed her PhD at AgroParisTech, under the supervision of Prof. Claire Neema and studied the molecular basis of host-pathogen coevolution in natural populations of common bean. She then spent her Postdoc time in the lab of Prof. Tom Mitchell-Olds at the Max Planck Institute of Chemical Ecology in Jena and worked on the evolution of cis-regulatory DNA. Since 2005, she runs her own lab, first at the Max Planck Institute of Plant Breeding in Cologne and then at the University of Münster. In January 2015, she relocated her lab at the University of Cologne. She is currently serving as the Treasurer for the Society for Molecular Biology and Evolution.

You can reach Juliette at


Forgot username/password?

Registration and Membership

Non-Members: You must Register for an account to purchase a membership and conduct other transactions. Future visits to the website will only require login.

After login or registration: You may conduct online transactions such as joining or renewing a membership, registering for an annual meeting and making donations.

Events Calendar

Check out our Events Calendar
for upcoming meetings. 

If you have an event you wish to add,
just email it to


The Society for Molecular Biology and Evolution is an international organization whose goals are to provide facilities for association and communication among molecular evolutionists and to further the goals of molecular evolution, as well as its practitioners and teachers. In order to accomplish these goals, the Society publishes two peer-reviewed journals, Molecular Biology and Evolution and Genome Biology and Evolution. The Society sponsors an annual meeting, as well as smaller satellite meetings or workshop on important, focused, and timely topics. It also confers honors and awards to students and researchers.

SMBE 2018

It is our pleasure to invite you to attend SMBE 2018 - the annual meeting of the Society for Molecular Biology and Evolution. SMBE 2018 will be held from the 8th to the 12th of July in Yokohama, Japan. SMBE 2018 at Yokohama is to celebrate the 50th anniversary of the landmark paper by Kimura (1968) who proposed the neutral theory of molecular evolution. The meeting - including plenary talks, symposia presentations, the Walter Fitch symposium, and poster sessions - will showcase the latest research in genomics, population genetics, and molecular biology and evolution. 

More information can be found HERE


SMBE is a member of the Scientific Society Publisher Alliance

Featured News and Updates

SMBE 2018 Faculty Awards

Congratulations to the winners of the SMBE 2018 annual faculty awards! 

2018 SMBE Allan Wilson Junior Award for Independent Research Winner: Melissa Wilson Sayres, Arizona State University

Dr. Melissa Wilson Sayres is an Assistant Professor in the School of Life Sciences and Center for Evolution and Medicine at Arizona State University. Broadly, her laboratory analyzes large-scale genomic and transcriptomic datasets to study sex-specific processes. The Wilson Sayres laboratory studies how sex chromosomes arise and evolve, utilizes sex chromosomes to understand population history, and is working to incorporate genetic and phenotypic sex as a biological variable in health and disease research. She received her B.S. in Medical Mathematics from Creighton University in Omaha, Nebraska, her Ph.D. in Integrative Biology: Bioinformatics & Genomics from The Pennsylvania State University working with Dr. Kateryna Makova, and studied as a Miller postdoctoral fellow at the University of California, Berkeley with Rasmus Nielsen. Her laboratory and research are currently supported by an NIH NIGMS R35 Maximizing Investigators’ Research Award, the Leakey Foundation, and a Heritage grant from Arizona Game and Fish. 

2018 Margaret Dayhoff Mid-Career Award Winner: Matthew W. Hahn

Matthew W. Hahn is a Professor of Biology and Computer Science at Indiana University. He got his B.S. from Cornell University working with Rick Harrison, his Ph.D. from Duke University working with Mark Rausher, and was a postdoctoral fellow at the University of California, Davis working with Chuck Langley and John Gillespie. His research uses population genetic and phylogenetic approaches to understand adaptation, speciation, and the evolution of genes and genomes.  

2018 SMBE Motoo Kimura Lifetime Contribution Award Winner: Tomoko Ohta

I was born in 1933, and graduated from the University of Tokyo in 1956. At that time, female students were very few in Japanese Universities, and it was difficult to get a good job in a professional field. I spent a few years at the publishing company doing editorial tasks such as proof-reading. I was not good at this job and was looking for a research position at a university or an institute. Fortunately, the Kihara Institute for Biological Research moved from Kyoto to Yokohama and I was hired. There I worked on plant cytogenetics. Then I had a chance to study at North Carolina State University. After finishing my PhD in 1966, I found a position at the Kimura Laboratory of the National Institute of Genetics, Mishima, Japan, where I started research life on molecular evolution and population genetics. It was a good time to start research in this field, because Kimura was thinking to examine biochemical data from the standpoint of population genetics. He proposed the neutral theory of molecular evolution in

Continue Reading →

  • Thursday, April 05, 2018
  • Comments (0)

SMBE Undergraduate Travel and Mentoring Awards

Deadline extended

The Society for Molecular Biology and Evolution offers travel awards for undergraduate students to attend their annual meeting and recent mentoring there, this year in Yokohama, Japan ( Eligibility includes Masters students under a 3+2 system. Eligibility is based on status at the time of application.

Awardees will receive 1500-2000 USD ($) toward travel and registration fees (the larger amount is for long-haul travel, the smaller for within Australasia). You will also be assigned a mentor at the meeting to advise you and to introduce you to potential collaborators, PhD supervisors, etc. You will also participate in the meeting’s poster session with a poster you will prepare on your research.

Continue Reading →

  • Monday, January 29, 2018
  • Comments (0)

Nominations Requested for Prestigious SMBE Awards

SMBE honors outstanding researchers each year with four distinctive awards. They are the:

  • Allen Wilson Junior Award for Independent Research
  • Margaret Dayoff Mid-Career Award
  • Motoo Kimura Lifetime Contribution Award
  • SMBE Community Service Award
SMBE is now calling for nominations for these awards and is asking you to consider nominating a worthy colleague.

The nominations will be due on January 19, 2018.

Continue Reading →

  • Wednesday, December 20, 2017
  • Comments (0)

Where Will SMBE's Annual Meeting Be Held In 2021?

Proposals Now Being Accepted

SMBE is accepting proposals to host its International Meeting in 2021. The meeting is usually held in June or July and attracts up to 1500 scientists from throughout the world. For 2021, the Society will accept proposals from *outside* North America and Europe, because the next three meetings will be held in Yokohama, Japan (2018), Manchester, UK (2019), and Quebec, Canada (2020), respectively. The successful location will need to have a main lecture hall seating all attendees for plenary lectures, plus nearby smaller rooms for parallel sessions, and space for poster viewing. It will also need to be near housing, preferably with a wide variety of housing options.

Continue Reading →

  • Monday, October 23, 2017
  • Comments (0)

Plan to Participate - SMBE 2018 in Yokohama, Japan

SMBE2018, Yokohama, Japan, website is live

Continue Reading →

  • Friday, August 04, 2017
  • Comments (0)

SMBE satellite symposium on Molecular Evolution and Medicine

SMBE members are invited to attend a two-day symposium on Molecular Evolution and Medicine. SMBE members will receive a 50% discount on the registration fee if they use the TEMPLE50 discount code.

Location: Temple University, Philadelphia, USA
Program (Day 1): September 16, 2017: Molecular Evolution informs Medicine talks and posters (Temple sponsored)
Program (Day 2): September 17, 2017: Molecular Evolutionary Genetics (Nei Celebration; SMBE sponsored)

Program information is listed at (>40 speakers)

To register, click on (use discount code TEMPLE50)

To present a contributed talk or poster, visit (deadline August 15)

Continue Reading →

  • Friday, August 04, 2017
  • Comments (0)

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

First Population-Scale Sequencing Project Explores Platypus History

Fri, 20 Apr 2018 00:00:00 GMT

The platypus is the ultimate evolutionary mashup of birds, reptiles and mammals. The iconic, egg-laying, venom producing, duck-billed platypus first had its genome sequenced in 2008, revealing its unique genetic makeup and its divergence from the rest of the mammals around 160 Ma.

Using Whole-Genome Analysis to Home in on Racing Pigeon Performance

Fri, 20 Apr 2018 00:00:00 GMT

Before the Wi-fi and the Internet, the telephone and the telegraph, the original instant messaging services of society were homing pigeons. After becoming the first domesticated birds, for an estimated 2,000 years, these reliable messengers have brought news from battlefronts and between heads of state.

Insights into Platypus Population Structure and History from Whole-Genome Sequencing

Tue, 20 Mar 2018 00:00:00 GMT

The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10−9/bp/generation (95% CI 4.1 × 10−9–1.2 × 10−8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.

Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont

Thu, 15 Mar 2018 00:00:00 GMT

Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.

Signatures of Selection on Standing Genetic Variation Underlie Athletic and Navigational Performance in Racing Pigeons

Tue, 13 Mar 2018 00:00:00 GMT

Racing pigeons have been selectively bred to find their way home quickly over what are often extremely long distances. This breed is of substantial commercial value and is also an excellent avian model to gain empirical insights into the evolution of traits associated with flying performance and spatial orientation. Here, we investigate the molecular basis of the superior athletic and navigational capabilities of racing pigeons using whole-genome and RNA sequencing data. We inferred multiple signatures of positive selection distributed across the genome of racing pigeons. The strongest signature overlapped the CASK gene, a gene implicated in the formation of neuromuscular junctions. However, no diagnostic alleles were found between racing pigeons and other breeds, and only a small proportion of highly differentiated variants were exclusively detected in racing pigeons. We can thus conclude that very few individual genetic changes, if any, are either strictly necessary or sufficient for superior athletics and navigation. Gene expression analysis between racing and nonracing breeds revealed modest differences in muscle (213) and brain (29). These transcripts, however, showed only slightly elevated levels of genetic differentiation between the two groups, suggesting that most differential expression is not causative but likely a consequence of alterations in regulatory networks. Our results show that the unique suite of traits that enable fast flight, long endurance, and accurate navigation in racing pigeons, do not result from few loci acting as master switches but likely from a polygenic architecture that leveraged standing genetic variation available at the onset of the breed formation.

Extended and Continuous Decline in Effective Population Size Results in Low Genomic Diversity in the World’s Rarest Hyena Species, the Brown Hyena

Thu, 08 Mar 2018 00:00:00 GMT

Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started ∼1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species.

Natural Selection and Origin of a Melanistic Allele in North American Gray Wolves

Tue, 06 Mar 2018 00:00:00 GMT

Pigmentation is often used to understand how natural selection affects genetic variation in wild populations since it can have a simple genetic basis, and can affect a variety of fitness-related traits (e.g., camouflage, thermoregulation, and sexual display). In gray wolves, the K locus, a β-defensin gene, causes black coat color via a dominantly inherited KB allele. The allele is derived from dog-wolf hybridization and is at high frequency in North American wolf populations. We designed a DNA capture array to probe the geographic origin, age, and number of introgression events of the KB allele in a panel of 331 wolves and 20 dogs. We found low diversity in KB, but not ancestral ky, wolf haplotypes consistent with a selective sweep of the black haplotype across North America. Further, North American wolf KB haplotypes are monophyletic, suggesting that a single adaptive introgression from dogs to wolves most likely occurred in the Northwest Territories or Yukon. We use a new analytical approach to date the origin of the KB allele in Yukon wolves to between 1,598 and 7,248 years ago, suggesting that introgression with early Native American dogs was the source. Using population genetic simulations, we show that the K locus is undergoing natural selection in four wolf populations. We find evidence for balancing selection, specifically in Yellowstone wolves, which could be a result of selection for enhanced immunity in response to distemper. With these data, we demonstrate how the spread of an adaptive variant may have occurred across a species’ geographic range.

Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data

Tue, 06 Mar 2018 00:00:00 GMT

Next-generation sequencing (NGS) technologies offer immense possibilities given the large genomic data they simultaneously deliver. The human Y-chromosome serves as good example how NGS benefits various applications in evolution, anthropology, genealogy, and forensics. Prior to NGS, the Y-chromosome phylogenetic tree consisted of a few hundred branches, based on NGS data, it now contains many thousands. The complexity of both, Y tree and NGS data provide challenges for haplogroup assignment. For effective analysis and interpretation of Y-chromosome NGS data, we present Yleaf, a publically available, automated, user-friendly software for high-resolution Y-chromosome haplogroup inference independently of library and sequencing methods.

Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution

Mon, 05 Mar 2018 00:00:00 GMT

To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24–63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.

Selection and Neutral Mutations Drive Pervasive Mutability Losses in Long-Lived Anti-HIV B-Cell Lineages

Thu, 22 Feb 2018 00:00:00 GMT

High-affinity antibodies arise within weeks of infection from the evolution of B-cell receptors under selection to improve antigen recognition. This rapid adaptation is enabled by the distribution of highly mutable “hotspot” motifs in B-cell receptor genes. High mutability in antigen-binding regions (complementarity determining regions [CDRs]) creates variation in binding affinity, whereas low mutability in structurally important regions (framework regions [FRs]) may reduce the frequency of destabilizing mutations. During the response, loss of mutational hotspots and changes in their distribution across CDRs and FRs are predicted to compromise the adaptability of B-cell receptors, yet the contributions of different mechanisms to gains and losses of hotspots remain unclear. We reconstructed changes in anti-HIV B-cell receptor sequences and show that mutability losses were ∼56% more frequent than gains in both CDRs and FRs, with the higher relative mutability of CDRs maintained throughout the response. At least 21% of the total mutability loss was caused by synonymous mutations. However, nonsynonymous substitutions caused most (79%) of the mutability loss in CDRs. Because CDRs also show strong positive selection, this result suggests that selection for mutations that increase binding affinity contributed to loss of mutability in antigen-binding regions. Although recurrent adaptation to evolving viruses could indirectly select for high mutation rates, we found no evidence of indirect selection to increase or retain hotspots. Our results suggest mutability losses are intrinsic to both the neutral and adaptive evolution of B-cell populations and might constrain their adaptation to rapidly evolving pathogens such as HIV and influenza.

Accelerated Estimation of Frequency Classes in Site-Heterogeneous Profile Mixture Models

Thu, 22 Feb 2018 00:00:00 GMT

As a consequence of structural and functional constraints, proteins tend to have site-specific preferences for particular amino acids. Failing to adjust for heterogeneity of frequencies over sites can lead to artifacts in phylogenetic estimation. Site-heterogeneous mixture-models have been developed to address this problem. However, due to prohibitive computational times, maximum likelihood implementations utilize fixed component frequency vectors inferred from sequences in a database that are external to the alignment under analysis. Here, we propose a composite likelihood approach to estimation of component frequencies for a mixture model that directly uses the data from the alignment of interest. In the common case that the number of taxa under study is not large, several adjustments to the default composite likelihood are shown to be necessary. In simulations, the approach is shown to provide large improvements over hierarchical clustering. For empirical data, substantial improvements in likelihoods are found over mixtures using fixed components.

Rates of Mutation and Recombination in Siphoviridae Phage Genome Evolution over Three Decades

Thu, 22 Feb 2018 00:00:00 GMT

The evolution of asexual organisms is driven not only by the inheritance of genetic modification but also by the acquisition of foreign DNA. The contribution of vertical and horizontal processes to genome evolution depends on their rates per year and is quantified by the ratio of recombination to mutation. These rates have been estimated for bacteria; however, no estimates have been reported for phages. Here, we delineate the contribution of mutation and recombination to dsDNA phage genome evolution. We analyzed 34 isolates of the 936 group of Siphoviridae phages using a Lactococcus lactis strain from a single dairy over 29 years. We estimate a constant substitution rate of 1.9 × 10−4 substitutions per site per year due to mutation that is within the range of estimates for eukaryotic RNA and DNA viruses. The reconstruction of recombination events reveals a constant rate of five recombination events per year and 4.5 × 10−3 nucleotide alterations due to recombination per site per year. Thus, the recombination rate exceeds the substitution rate, resulting in a relative effect of recombination to mutation (r/m) of ∼24 that is homogenous over time. Especially in the early transcriptional region, we detect frequent gene loss and regain due to recombination with phages of the 936 group, demonstrating the role of the 936 group pangenome as a reservoir of genetic variation. The observed substitution rate homogeneity conforms to the neutral theory of evolution; hence, the neutral theory can be applied to phage genome evolution and also to genetic variation brought about by recombination.

RADpainter and fineRADstructure: Population Inference from RADseq Data

Tue, 20 Feb 2018 00:00:00 GMT

Powerful approaches to inferring recent or current population structure based on nearest neighbor haplotype “coancestry” have so far been inaccessible to users without high quality genome-wide haplotype data. With a boom in nonmodel organism genomics, there is a pressing need to bring these methods to communities without access to such data. Here, we present RADpainter, a new program designed to infer the coancestry matrix from restriction-site-associated DNA sequencing (RADseq) data. We combine this program together with a previously published MCMC clustering algorithm into fineRADstructure—a complete, easy to use, and fast population inference package for RADseq data (; last accessed February 24, 2018). Finally, with two example data sets, we illustrate its use, benefits, and robustness to missing RAD alleles in double digest RAD sequencing.

Recently Evolved Tumor Suppressor Transcript TP73-AS1 Functions as Sponge of Human-Specific miR-941

Tue, 20 Feb 2018 00:00:00 GMT

MicroRNA (miRNA) sponges are vital components of posttranscriptional gene regulation. Yet, only a limited number of miRNA sponges have been identified. Here, we show that the recently evolved noncoding tumor suppressor transcript, antisense RNA to TP73 gene (TP73-AS1), functions as a natural sponge of human-specific miRNA miR-941. We find unusually nine high-affinity miR-941 binding sites clustering within 1 kb region on TP73-AS1, which forms miR-941 sponge region. This sponge region displays increased sequence constraint only in humans, and its formation can be traced to the tandem expansion of a 71-nt-long sequence containing a single miR-941 binding site in old world monkeys. We further confirm TP73-AS1 functions as an efficient miR-941 sponge based on massive transcriptome data analyses, wound-healing assay, and Argonaute protein immunoprecipitation experiments conducted in cell lines. The expression of miR-941 and its sponge correlate inversely across multiple healthy and cancerous tissues, with miR-941 being highly expressed in tumors and preferentially repressing tumor suppressors. Thus, the TP73-AS1 and miR-941 duo represents an unusual case of the extremely rapid evolution of noncoding regulators controlling cell migration, proliferation, and tumorigenesis.

Using Genotype Abundance to Improve Phylogenetic Inference

Tue, 20 Feb 2018 00:00:00 GMT

Modern biological techniques enable very dense genetic sampling of unfolding evolutionary histories, and thus frequently sample some genotypes multiple times. This motivates strategies to incorporate genotype abundance information in phylogenetic inference. In this article, we synthesize a stochastic process model with standard sequence-based phylogenetic optimality, and show that tree estimation is substantially improved by doing so. Our method is validated with extensive simulations and an experimental single-cell lineage tracing study of germinal center B cell receptor affinity maturation.

Genomic Evidence of Widespread Admixture from Polar Bears into Brown Bears during the Last Ice Age

Tue, 20 Feb 2018 00:00:00 GMT

Recent genomic analyses have provided substantial evidence for past periods of gene flow from polar bears (Ursus maritimus) into Alaskan brown bears (Ursus arctos), with some analyses suggesting a link between climate change and genomic introgression. However, because it has mainly been possible to sample bears from the present day, the timing, frequency, and evolutionary significance of this admixture remains unknown. Here, we analyze genomic DNA from three additional and geographically distinct brown bear populations, including two that lived temporally close to the peak of the last ice age. We find evidence of admixture in all three populations, suggesting that admixture between these species has been common in their recent evolutionary history. In addition, analyses of ten fossil bears from the now-extinct Irish population indicate that admixture peaked during the last ice age, whereas brown bear and polar bear ranges overlapped. Following this peak, the proportion of polar bear ancestry in Irish brown bears declined rapidly until their extinction. Our results support a model in which ice age climate change created geographically widespread conditions conducive to admixture between polar bears and brown bears, as is again occurring today. We postulate that this model will be informative for many admixing species pairs impacted by climate change. Our results highlight the power of paleogenomics to reveal patterns of evolutionary change that are otherwise masked in contemporary data.

Molecular Data Support an Early Shift to an Intermediate-Light Niche in the Evolution of Mammals

Wed, 14 Feb 2018 00:00:00 GMT

The visual ability and associated photic niche of early mammals is debated. The theory that ancestral mammals were nocturnal is supported by diverse adaptations. However, others argue that photopigment repertoires of early mammals are more consistent with a crepuscular niche, and support for this also comes from inferred spectral tuning of middle/long wavelength-sensitive (M/LWS) opsin sequences. Functional studies have suggested that the M/LWS pigment in the ancestor of Mammalia was either red- or green-sensitive; however, these were based on outdated phylogenies with key lineages omitted. By performing the most detailed study to date of middle/long-wave mammalian color vision, we provide the first experimental evidence that the M/LWS pigment of amniotes underwent a 9-nm spectral shift towards shorter wavelengths in the Mammalia ancestor, exceeding predictions from known critical sites. Our results suggest early mammals were yellow-sensitive, possibly representing an adaptive trade-off for both crepuscular (twilight) and nocturnal (moonlight) niches.

Transcription-Associated Mutation Promotes RNA Complexity in Highly Expressed Genes—A Major New Source of Selectable Variation

Tue, 06 Feb 2018 00:00:00 GMT

Alternatively spliced transcript isoforms are thought to play a critical role for functional diversity. However, the mechanism generating the enormous diversity of spliced transcript isoforms remains unknown, and its biological significance remains unclear. We analyzed transcriptomes in saker falcons, chickens, and mice to show that alternative splicing occurs more frequently, yielding more isoforms, in highly expressed genes. We focused on hemoglobin in the falcon, the most abundantly expressed genes in blood, finding that alternative splicing produces 10-fold more isoforms than expected from the number of splice junctions in the genome. These isoforms were produced mainly by alternative use of de novo splice sites generated by transcription-associated mutation (TAM), not by the RNA editing mechanism normally invoked. We found that high expression of globin genes increases mutation frequencies during transcription, especially on nontranscribed DNA strands. After DNA replication, transcribed strands inherit these somatic mutations, creating de novo splice sites, and generating multiple distinct isoforms in the cell clone. Bisulfate sequencing revealed that DNA methylation may counteract this process by suppressing TAM, suggesting DNA methylation can spatially regulate RNA complexity. RNA profiling showed that falcons living on the high Qinghai–Tibetan Plateau possess greater global gene expression levels and higher diversity of mean to high abundance isoforms (reads per kilobases per million mapped reads ≥18) than their low-altitude counterparts, and we speculate that this may enhance their oxygen transport capacity under low-oxygen environments. Thus, TAM-induced RNA diversity may be physiologically significant, providing an alternative strategy in lifestyle evolution.

Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion

Tue, 30 Jan 2018 00:00:00 GMT

Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.

The State of Software for Evolutionary Biology

Mon, 29 Jan 2018 00:00:00 GMT

With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development.

Whole-Body Single-Cell Sequencing Reveals Transcriptional Domains in the Annelid Larval Body

Wed, 24 Jan 2018 00:00:00 GMT

Animal bodies comprise diverse arrays of cells. To characterize cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridization of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising, for example, apical sensory-neurosecretory cells versus neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo–devo research.

Transgenerationally Precipitated Meiotic Chromosome Instability Fuels Rapid Karyotypic Evolution and Phenotypic Diversity in an Artificially Constructed Allotetraploid Wheat (AADD)

Mon, 22 Jan 2018 00:00:00 GMT

Although a distinct karyotype with defined chromosome number and structure characterizes each biological species, it is intrinsically labile. Polyploidy or whole-genome duplication has played a pervasive and ongoing role in the evolution of all eukaryotes, and is the most dramatic force known to cause rapid karyotypic reconfiguration, especially at the initial stage. However, issues concerning transgenerational propagation of karyotypic heterogeneity and its translation to phenotypic diversity in nascent allopolyploidy, at the population level, have yet to be studied in detail. Here, we report a large-scale examination of transgenerationally propagated karyotypic heterogeneity and its phenotypic manifestation in an artificially constructed allotetraploid with a genome composition of AADD, that is, involving two of the three progenitor genomes of polyploid wheat. Specifically, we show that 1) massive organismal karyotypic heterogeneity is precipitated after 12 consecutive generations of selfing from a single euploid founder individual, 2) there exist dramatic differences in aptitudes between subgenomes and among chromosomes for whole-chromosome gain and/or loss and structural variations, 3) majority of the numerical and structural chromosomal variations are concurrent due to mutual contingency and possible functional constraint, 4) purposed and continuous selection and propagation for euploidy over generations did not result in enhanced karyotype stabilization, and 5) extent of karyotypic variation correlates with variability of phenotypic manifestation. Together, our results document that allopolyploidization catalyzes rampant and transgenerationally heritable organismal karyotypic heterogeneity that drives population-level phenotypic diversification, which lends fresh empirical support to the still contentious notion that whole-genome duplication enhances organismal evolvability.

GBE | Most Read

Genome Biology & Evolution

Highlight: Big Surprises from the World’s Smallest Fish

Thu, 12 Apr 2018 00:00:00 GMT

In the murky blackwaters of the peat swamp forests of Southeast Asia lives the world’s smallest fish, the dwarf minnow of the genus Paedocypris. This extreme environment, characterized by low oxygen and high acidity, is home to several miniaturized fish species. Paedocypris adults are a mere 8–12 mm in length and resemble zebrafish larvae, a phenomenon known as progenesis. In the case of Paedocypris, this developmental truncation is extreme, with over 40 bones found in zebrafish adults that never develop at all in Paedocypris.

Complete Genome Sequences of Seven Vibrio anguillarum Strains as Derived from PacBio Sequencing

Sat, 07 Apr 2018 00:00:00 GMT

We report here the complete genome sequences of seven Vibrio anguillarum strains isolated from multiple geographic locations, thus increasing the total number of genomes of finished quality to 11. The genomes were de novo assembled from long-sequence PacBio reads. Including draft genomes, a total of 44 V. anguillarum genomes are currently available in the genome databases. They represent an important resource in the study of, for example, genetic variations and for identifying virulence determinants. In this article, we present the genomes and basic genome comparisons of the 11 complete genomes, including a BRIG analysis, and pan genome calculation. We also describe some structural features of superintegrons on chromosome 2 s, and associated insertion sequence (IS) elements, including 18 new ISs (ISVa3 − ISVa20), both of importance in the complement of V. anguillarum genomes.

Determinants of the efficacy of natural selection on coding and noncoding variability in two passerine species

Fri, 06 Apr 2018 00:00:00 GMT

Pádraic Corcoran, Toni I. Gossmann, Henry J. Barton, The Great Tit HapMap Consortium, Jon Slate, and Kai Zeng

The Novel Evolution of the Sperm Whale Genome

Fri, 06 Apr 2018 00:00:00 GMT

Wesley C. Warren, Lukas Kuderna, Alana Alexander, Julian Catchen, José G. Pérez-Silva, Carlos López-Otín, Víctor Quesada, Patrick Minx, Chad Tomlinson, Michael J. Montague, Fabiana H.G. Farias, Ronald B. Walter, Tomas Marques-Bonet, Travis Glenn, Troy J. Kieran, Sandra S. Wise, John Pierce Wise Jr, Robert M. Waterhouse, John Pierce Wise Sr

The Genome Sequence of “Candidatus Fokinia solitaria”: Insights on Reductive Evolution in Rickettsiales

Thu, 05 Apr 2018 00:00:00 GMT

Candidatus Fokinia solitaria” is an obligate intracellular endosymbiont of a unicellular eukaryote, a ciliate of the genus Paramecium. Here, we present the genome sequence of this bacterium and subsequent analysis. Phylogenomic analysis confirmed the previously reported positioning of the symbiont within the “Candidatus Midichloriaceae” family (order Rickettsiales), as well as its high sequence divergence from other members of the family, indicative of fast sequence evolution. Consistently with this high evolutionary rate, a comparative genomic analysis revealed that the genome of this symbiont is the smallest of the Rickettsiales to date. The reduced genome does not present flagellar genes, nor the pathway for the biosynthesis of lipopolysaccharides (present in all the other so far sequenced members of the family “Candidatus Midichloriaceae”) or genes for the Krebs cycle (present, although not always complete, in Rickettsiales). These results indicate an evolutionary trend toward a stronger dependence on the host, in comparison with other members of the family. Two alternative scenarios are compatible with our results; “Candidatus Fokinia solitaria” could be either a recently evolved, vertically transmitted mutualist, or a parasite with a high host-specificity.

Genes from the TAS1R and TAS2R Families of Taste Receptors: Looking for Signatures of Their Adaptive Role in Human Evolution

Wed, 04 Apr 2018 00:00:00 GMT

Taste perception is crucial in monitoring food intake and, hence, is thought to play a significant role in human evolution. To gain insights into possible adaptive signatures in genes encoding bitter, sweet, and umami taste receptors, we surveyed the available sequence variation data from the 1000 Genomes Project Phase 3 for TAS1R (TAS1R1-3) and TAS2R (TAS2R16 and TAS2R38) families. Our study demonstrated that genes from these two families have experienced contrasting evolutionary histories: While TAS1R1 and TAS1R3 showed worldwide evidence of positive selection, probably correlated with improved umami and sweet perception, the patterns of variation displayed by TAS2R16 and TAS2R38 were more consistent with scenarios of balancing selection that possibly conferred a heterozygous advantage associated with better capacity to perceive a wide range of bitter compounds. In TAS2R16, such adaptive events appear to have occurred restrictively in mainland Africa, whereas the strongest evidence in TAS2R38 was detected in Europe. Despite plausible associations between taste perception and the TAS1R and TAS2R selective signatures, we cannot discount other biological mechanisms as driving the evolutionary trajectories of those TAS1R and TAS2R members, especially given recent findings of taste receptors behaving as the products of pleiotropic genes involved in many functions outside the gustatory system.

Selection in the Introgressed Regions of the Chimpanzee Genome

Wed, 04 Apr 2018 00:00:00 GMT

During the demographic history of the Pan clade, there has been gene-flow between species, likely >200,000 years ago. Bonobo haplotypes in three subspecies of chimpanzee have been identified to be segregating in modern-day chimpanzee populations, suggesting that these haplotypes, with increased differentiation, may be a target of natural selection. Here, we investigate signatures of adaptive introgression within the bonobo-like haplotypes in chimpanzees using site frequency spectrum-based tests. We find evidence for subspecies-specific adaptations in introgressed regions involved with male reproduction in central chimpanzees, the immune system in eastern chimpanzees, female reproduction and the nervous system in Nigeria-Cameroon chimpanzees. Furthermore, our results indicate signatures of balancing selection in some of the putatively introgressed regions. This might be the product of long-term balancing selection resulting in a similar genomic signature as introgression, or possibly balancing selection acting on alleles reintroduced through gene flow.

Influence of Electron–Holes on DNA Sequence-Specific Mutation Rates

Wed, 21 Mar 2018 00:00:00 GMT

Biases in mutation rate can influence molecular evolution, yielding rates of evolution that vary widely in different parts of the genome and even among neighboring nucleotides. Here, we explore one possible mechanism of influence on sequence-specific mutation rates, the electron–hole, which can localize and potentially trigger a replication mismatch. A hole is a mobile site of positive charge created during one-electron oxidation by, for example, radiation, contact with a mutagenic agent, or oxidative stress. Its quantum wavelike properties cause it to localize at various sites with probabilities that vary widely, by orders of magnitude, and depend strongly on the local sequence. We find significant correlations between hole probabilities and mutation rates within base triplets, observed in published mutation accumulation experiments on four species of bacteria. We have also computed hole probability spectra for hypervariable segment I of the human mtDNA control region, which contains several mutational hotspots, and for heptanucleotides in noncoding regions of the human genome, whose polymorphism levels have recently been reported. We observe significant correlations between hole probabilities, and context-specific mutation and substitution rates. The correlation with hole probability cannot be explained entirely by CpG methylation in the heptanucleotide data. Peaks in hole probability tend to coincide with mutational hotspots, even in mtDNA where CpG methylation is rare. Our results suggest that hole-enhanced mutational mechanisms, such as oxidation-stabilized tautomerization and base deamination, contribute to molecular evolution.

Homologous Recombination and Transposon Propagation Shape the Population Structure of an Organism from the Deep Subsurface with Minimal Metabolism

Mon, 19 Mar 2018 00:00:00 GMT

DPANN archaea are primarily known based on genomes from metagenomes and single cells. We reconstructed a complete population genome for Candidatus “Forterrea,” a Diapherotrite with a predicted symbiotic lifestyle probably centered around nucleotide metabolism and RuBisCO. Genome-wide analysis of sequence variation provided insights into the processes that shape its population structure in the deep subsurface. The genome contains many transposons, yet reconstruction of a complete genome from a short-read insert data set was possible because most occurred only in some individuals. Accuracy of the final reconstruction could be verified because the genome displays the pattern of cumulative GC skew known for some archaea but more typically associated with bacteria. Sequence variation is highly localized, and most pronounced around transposons and relatively close to the origin of replication. Patterns of variation are best explained by homologous recombination, a process previously not described for DPANN archaea.

Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta)

Fri, 16 Mar 2018 00:00:00 GMT

Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes

Thu, 15 Mar 2018 00:00:00 GMT

The world’s smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development.

Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends

Wed, 14 Mar 2018 00:00:00 GMT

Dinoflagellates are a group of unicellular protists with immense ecological and evolutionary significance and cell biological diversity. Of the photosynthetic dinoflagellates, the majority possess a plastid containing the pigment peridinin, whereas some lineages have replaced this plastid by serial endosymbiosis with plastids of distinct evolutionary affiliations, including a fucoxanthin pigment-containing plastid of haptophyte origin. Previous studies have described the presence of widespread substitutional RNA editing in peridinin and fucoxanthin plastid genes. Because reports of this process have been limited to manual assessment of individual lineages, global trends concerning this RNA editing and its effect on the biological function of the plastid are largely unknown. Using novel bioinformatic methods, we examine the dynamics and evolution of RNA editing over a large multispecies data set of dinoflagellates, including novel sequence data from the peridinin dinoflagellate Pyrocystis lunula and the fucoxanthin dinoflagellate Karenia mikimotoi. We demonstrate that while most individual RNA editing events in dinoflagellate plastids are restricted to single species, global patterns, and functional consequences of editing are broadly conserved. We find that editing is biased toward specific codon positions and regions of genes, and generally corrects otherwise deleterious changes in the genome prior to translation, though this effect is more prevalent in peridinin than fucoxanthin lineages. Our results support a model for promiscuous editing application subsequently shaped by purifying selection, and suggest the presence of an underlying editing mechanism transferred from the peridinin-containing ancestor into fucoxanthin plastids postendosymbiosis, with remarkably conserved functional consequences in the new lineage.

Phylogenomic Analysis of β-Lactamase in Archaea and Bacteria Enables the Identification of Putative New Members

Mon, 05 Mar 2018 00:00:00 GMT

β-lactamases are enzymes which are commonly produced by bacteria and which degrade the β-lactam ring of β-lactam antibiotics, namely penicillins, cephalosporins, carbapenems, and monobactams, and inactivate these antibiotics. We performed a rational and comprehensive investigation of β-lactamases in different biological databases. In this study, we constructed hidden Markov model profiles as well as the ancestral sequence of four classes of β-lactamases (A, B, C, and D), which were used to identify potential β-lactamases from environmental metagenomic (1206), human microbiome metagenomic (6417), human microbiome reference genome (1310), and NCBI’s nonredundant databases (44101). Our analysis revealed the existence of putative β-lactamases in the metagenomic databases, which appeared to be similar to the four different molecular classes (A–D). This is the first report on the large-scale phylogenetic diversity of new members of β-lactamases, and our results revealed that metagenomic database dark-matter contains β-lactamase-like antibiotic resistance genes.

Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination

Mon, 05 Mar 2018 00:00:00 GMT

Sex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here, we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whereas in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater differentiation of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems can be facilitated by subtle genetic differences.

Genetic Diversity on the Sex Chromosomes

Wed, 21 Feb 2018 00:00:00 GMT

Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.

Are Nonsense Alleles of Drosophila melanogaster Genes under Any Selection?

Wed, 07 Feb 2018 00:00:00 GMT

A gene which carries a bona fide loss-of-function mutation effectively becomes a functionless pseudogene, free from selective constraint. However, there is a number of molecular mechanisms that may lead to at least a partial preservation of the function of genes carrying even drastic alleles. We performed a direct measurement of the strength of negative selection acting on nonsense alleles of protein-coding genes in the Zambian population of Drosophila melanogaster. Within those exons that carry nonsense mutations, negative selection, assayed by the ratio of missense over synonymous nucleotide diversity levels, appears to be absent, consistent with total loss of function. In other exons of nonsense alleles, negative selection was deeply relaxed but likely not completely absent, and the per site number of missense alleles declined significantly with the distance from the premature stop codon. This pattern may be due to alternative splicing which preserves function of some isoforms of nonsense alleles of genes.