Community Service Award

This award will be awarded to members of SMBE who have provided exceptional service to SMBE and the broader scientific community. The term "service" applies broadly to include specific service to the community (such as to the SMBE journals, the Council or annual meetings) and also service that includes scientific outreach and education. The prize includes an award of $2000 as well as reimbursement to attend the annual meeting. This award will be made periodically and initiated by the SMBE council. 

2019 SMBE Community Service Award Winner: Cathy Kennedy

Although Cathy is not a molecular evolutionist (her PhD from the University of Leicester was in animal behaviour), she has contributed significantly to the SMBE community through her service to the Society.

Cathy’s association with SMBE began in 2002 when, as a publisher for Oxford University Press (OUP), she oversaw MBE’s transition to OUP at a time when electronic journal publishing was in its infancy. She then worked with SMBE to launch GBE, which at that time was the only society-owned open-access online-only journal in the world. Now GBE is a thriving, profitable entity and there are a number of copycat journals; but it was a leap of faith for OUP to take the risk and Cathy was the one who made it happen.

MBE and GBE provide SMBE’s primary source of income. Their growing revenues have helped the Society to provide a huge range of awards and benefits that members now enjoy. Cathy is particularly pleased that these include measures to ensure women, parents, carers, and younger scientists from all over the world are able to attend SMBE meetings.

Since retirement from OUP, Cathy has continued to help SMBE - as a consultant on issues related to the publication of our two journals; identifying and negotiating a long-term conference organizing company for SMBE’s annual meetings; and serving as an ‘institutional memory’ for the society. Cathy is still available to answer questions, either about past practices of SMBE or with insights into the publishing world.


2017 SMBE Community Service Award Winner: Sudhir Kumar, Temple University 

Sudhir Kumar has been an early leader in exploring the theoretical and empirical intersection of evolutionary biology with computational biology, and forging accessible tools that allow researchers from diverse backgrounds to harness the analytical power of modern computational biology. With a background in Biological Sciences and Electrical & Electronics Engineering from Birla Institute of Technology and Sciences, he completed a Ph.D. and postdoctoral work in Genetics at Pennsylvania State University, mentored by Dr. Masatoshi Nei. During this period, he worked to develop the first version of Molecular Evolutionary Genetics Analysis (MEGA), a freely-accessible software package that has been maintained and improved over more than 20 years since its release. The enduring popularity of MEGA results from Kumar’s responsiveness to community needs and dedication to accessibility and scientific rigor. He has made numerous contributions to the mathematical theory of phylogenetics through advances in estimating evolutionary distances, inference of divergence times, and algorithms for constructing phylogenetic trees. Kumar and his laboratory continue to work actively on improving phylogenetic theory and applications to the growing field of phylomedicine, which explores disease via phylogenetic methods and makes predictions informed by evolutionary biology. Sudhir Kumar is currently the Laura H. Carnell Professor and the Director of the Institute for Genomics and Evolutionary Medicine at Temple University. He has served the SMBE community as elected Secretary, webmaster, President, chair of the organizing committee of the SMBE annual meeting in 2006 in Tempe, Arizona, and is currently serving as Editor-in-Chief of the society journal Molecular Biology and Evolution.


2016 SMBE Community Service Award Winner: Bill Martin

As a scientist, Bill Martin has furthered our understanding of life's early history with contributions to the study of physiology, gene transfer and endosymbiosis in microbial evolution. He has served SMBE for well over a decade. As the Editor-in-Chief of MBE 2003-2008, he fostered growth of the journal and the society while helping to usher SMBE into the age of electronic publishing. In 2009 he founded SMBE’s second journal, Genome Biology and Evolution, which was the first society-owned, open-access journal in the biological sciences.  He has served as the Editor-in-Chief ofGBE since its inception, overseeing the journal's contribution to the society and its benefit to the field. Bill is a fellow in the American Academy for Microbiology, a member of EMBO, and has been Chair of the Institute of Molecular Evolution at the University of Dusseldorf since 1999.

Award Information

Eligibility:  All members of the SMBE community are eligible for this prize. Members of the SMBE Council are not eligible for any awards during their years on council or in the year immediately following their service.

Nomination:  Nomination will be an open process that begins with a call to SMBE members, typically early in the calendar year.

All nominations will include:

  • A nomination letter that includes a recommendation for the candidate.

  • A one-page statement summarizing the candidate’s work and its fit to the award. 
  • A CV of the candidate.
  • A second recommendation letter.

Process: The President will convene an awards committee who will choose among those nominated.  It may also choose not to award the prize if no suitable candidates are nominated.

The materials should be compiled into a single PDF file, and should be emailed to smbe@allenpress.com before 25 January 2019.



 

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

Cartilaginous Fishes Provide Insights into the Origin, Diversification, and Sexually Dimorphic Expression of Vertebrate Estrogen Receptor Genes

Mon, 20 May 2019 00:00:00 GMT

Grant L. Filowitz, Rajendhran Rajakumar, Katherine L. O'Shaughnessy, and Martin J. Cohn

Killer Meiotic Drive and Dynamic Evolution of the wtf Gene Family

Tue, 16 Apr 2019 00:00:00 GMT

Abstract
Natural selection works best when the two alleles in a diploid organism are transmitted to offspring at equal frequencies. Despite this, selfish loci known as meiotic drivers that bias their own transmission into gametes are found throughout eukaryotes. Drive is thought to be a powerful evolutionary force, but empirical evolutionary analyses of drive systems are limited by low numbers of identified meiotic drive genes. Here, we analyze the evolution of the wtf gene family of Schizosaccharomyces pombe that contains both killer meiotic drive genes and suppressors of drive. We completed assemblies of all wtf genes for two S. pombe isolates, as well as a subset of wtf genes from over 50 isolates. We find that wtf copy number can vary greatly between isolates and that amino acid substitutions, expansions and contractions of DNA sequence repeats, and nonallelic gene conversion between family members all contribute to dynamic wtf gene evolution. This work demonstrates the power of meiotic drive to foster rapid evolution and identifies a recombination mechanism through which transposons can indirectly mobilize meiotic drivers.

Different Genomic Changes Underlie Adaptive Evolution in Populations of Contrasting History

Mon, 08 Apr 2019 00:00:00 GMT

Mol. Biol. Evol. 35(3):549–563, doi:10.1093/molbev/msx247

Paternally Expressed Imprinted Genes under Positive Darwinian Selection in Arabidopsis thaliana

Tue, 26 Mar 2019 00:00:00 GMT

Abstract
Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.

Evidence for Faster X Chromosome Evolution in Spiders

Tue, 26 Mar 2019 00:00:00 GMT

Abstract
In species with chromosomal sex determination, X chromosomes are predicted to evolve faster than autosomes because of positive selection on recessive alleles or weak purifying selection. We investigated X chromosome evolution in Stegodyphus spiders that differ in mating system, sex ratio, and population dynamics. We assigned scaffolds to X chromosomes and autosomes using a novel method based on flow cytometry of sperm cells and reduced representation sequencing. We estimated coding substitution patterns (dN/dS) in a subsocial outcrossing species (S. africanus) and its social inbreeding and female-biased sister species (S. mimosarum), and found evidence for faster-X evolution in both species. X chromosome-to-autosome diversity (piX/piA) ratios were estimated in multiple populations. The average piX/piA estimates of S. africanus (0.57 [95% CI: 0.55–0.60]) was lower than the neutral expectation of 0.75, consistent with more hitchhiking events on X-linked loci and/or a lower X chromosome mutation rate, and we provide evidence in support of both. The social species S. mimosarum has a significantly higher piX/piA ratio (0.72 [95% CI: 0.65–0.79]) in agreement with its female-biased sex ratio. Stegodyphus mimosarum also have different piX/piA estimates among populations, which we interpret as evidence for recurrent founder events. Simulations show that recurrent founder events are expected to decrease the piX/piA estimates in S. mimosarum, thus underestimating the true effect of female-biased sex ratios. Finally, we found lower synonymous divergence on X chromosomes in both species, and the male-to-female substitution ratio to be higher than 1, indicating a higher mutation rate in males.

Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics

Sat, 23 Mar 2019 00:00:00 GMT

Abstract
Increasingly, large phylogenomic data sets include transcriptomic data from nonmodel organisms. This not only has allowed controversial and unexplored evolutionary relationships in the tree of life to be addressed but also increases the risk of inadvertent inclusion of paralogs in the analysis. Although this may be expected to result in decreased phylogenetic support, it is not clear if it could also drive highly supported artifactual relationships. Many groups, including the hyperdiverse Lissamphibia, are especially susceptible to these issues due to ancient gene duplication events and small numbers of sequenced genomes and because transcriptomes are increasingly applied to resolve historically conflicting taxonomic hypotheses. We tested the potential impact of paralog inclusion on the topologies and timetree estimates of the Lissamphibia using published and de novo sequencing data including 18 amphibian species, from which 2,656 single-copy gene families were identified. A novel paralog filtering approach resulted in four differently curated data sets, which were used for phylogenetic reconstructions using Bayesian inference, maximum likelihood, and quartet-based supertrees. We found that paralogs drive strongly supported conflicting hypotheses within the Lissamphibia (Batrachia and Procera) and older divergence time estimates even within groups where no variation in topology was observed. All investigated methods, except Bayesian inference with the CAT-GTR model, were found to be sensitive to paralogs, but with filtering convergence to the same answer (Batrachia) was observed. This is the first large-scale study to address the impact of orthology selection using transcriptomic data and emphasizes the importance of quality over quantity particularly for understanding relationships of poorly sampled taxa.

Complete Inactivation of Sebum-Producing Genes Parallels the Loss of Sebaceous Glands in Cetacea

Wed, 20 Mar 2019 00:00:00 GMT

Abstract
Genomes are dynamic biological units, with processes of gene duplication and loss triggering evolutionary novelty. The mammalian skin provides a remarkable case study on the occurrence of adaptive morphological innovations. Skin sebaceous glands (SGs), for instance, emerged in the ancestor of mammals serving pivotal roles, such as lubrication, waterproofing, immunity, and thermoregulation, through the secretion of sebum, a complex mixture of various neutral lipids such as triacylglycerol, free fatty acids, wax esters, cholesterol, and squalene. Remarkably, SGs are absent in a few mammalian lineages, including the iconic Cetacea. We investigated the evolution of the key molecular components responsible for skin sebum production: Dgat2l6, Awat1, Awat2, Elovl3, Mogat3, and Fabp9. We show that all analyzed genes have been rendered nonfunctional in Cetacea species (toothed and baleen whales). Transcriptomic analysis, including a novel skin transcriptome from blue whale, supports gene inactivation. The conserved mutational pattern found in most analyzed genes, indicates that pseudogenization events took place prior to the diversification of modern Cetacea lineages. Genome and skin transcriptome analysis of the common hippopotamus highlighted the convergent loss of a subset of sebum-producing genes, notably Awat1 and Mogat3. Partial loss profiles were also detected in non-Cetacea aquatic mammals, such as the Florida manatee, and in terrestrial mammals displaying specialized skin phenotypes such as the African elephant, white rhinoceros and pig. Our findings reveal a unique landscape of “gene vestiges” in the Cetacea sebum-producing compartment, with limited gene loss observed in other mammalian lineages: suggestive of specific adaptations or specializations of skin lipids.

Dissecting the Pre-Columbian Genomic Ancestry of Native Americans along the Andes–Amazonia Divide

Wed, 20 Mar 2019 00:00:00 GMT

Abstract
Extensive European and African admixture coupled with loss of Amerindian lineages makes the reconstruction of pre-Columbian history of Native Americans based on present-day genomes extremely challenging. Still open questions remain about the dispersals that occurred throughout the continent after the initial peopling from the Beringia, especially concerning the number and dynamics of diffusions into South America. Indeed, if environmental and historical factors contributed to shape distinct gene pools in the Andes and Amazonia, the origins of this East-West genetic structure and the extension of further interactions between populations residing along this divide are still not well understood.To this end, we generated new high-resolution genome-wide data for 229 individuals representative of one Central and ten South Amerindian ethnic groups from Mexico, Peru, Bolivia, and Argentina. Low levels of European and African admixture in the sampled individuals allowed the application of fine-scale haplotype-based methods and demographic modeling approaches. These analyses revealed highly specific Native American genetic ancestries and great intragroup homogeneity, along with limited traces of gene flow mainly from the Andes into Peruvian Amazonians. Substantial amount of genetic drift differentially experienced by the considered populations underlined distinct patterns of recent inbreeding or prolonged isolation. Overall, our results support the hypothesis that all non-Andean South Americans are compatible with descending from a common lineage, while we found low support for common Mesoamerican ancestors of both Andeans and other South American groups. These findings suggest extensive back-migrations into Central America from non-Andean sources or conceal distinct peopling events into the Southern Continent.

Transmission Trees on a Known Pathogen Phylogeny: Enumeration and Sampling

Thu, 14 Mar 2019 00:00:00 GMT

Abstract
One approach to the reconstruction of infectious disease transmission trees from pathogen genomic data has been to use a phylogenetic tree, reconstructed from pathogen sequences, and annotate its internal nodes to provide a reconstruction of which host each lineage was in at each point in time. If only one pathogen lineage can be transmitted to a new host (i.e., the transmission bottleneck is complete), this corresponds to partitioning the nodes of the phylogeny into connected regions, each of which represents evolution in an individual host. These partitions define the possible transmission trees that are consistent with a given phylogenetic tree. However, the mathematical properties of the transmission trees given a phylogeny remain largely unexplored. Here, we describe a procedure to calculate the number of possible transmission trees for a given phylogeny, and we then show how to uniformly sample from these transmission trees. The procedure is outlined for situations where one sample is available from each host and trees do not have branch lengths, and we also provide extensions for incomplete sampling, multiple sampling, and the application to time trees in a situation where limits on the period during which each host could have been infected and infectious are known. The sampling algorithm is available as an R package (STraTUS).

Emergence of a Thrombospondin Superfamily at the Origin of Metazoans

Wed, 13 Mar 2019 00:00:00 GMT

Abstract
Extracellular matrix (ECM) is considered central to the evolution of metazoan multicellularity; however, the repertoire of ECM proteins in nonbilaterians remains unclear. Thrombospondins (TSPs) are known to be well conserved from cnidarians to vertebrates, yet to date have been considered a unique family, principally studied for matricellular functions in vertebrates. Through searches utilizing the highly conserved C-terminal region of TSPs, we identify undisclosed new families of TSP-related proteins in metazoans, designated mega-TSP, sushi-TSP, and poriferan-TSP, each with a distinctive phylogenetic distribution. These proteins share the TSP C-terminal region domain architecture, as determined by domain composition and analysis of molecular models against known structures. Mega-TSPs, the only form identified in ctenophores, are typically >2,700 aa and are also characterized by N-terminal leucine-rich repeats and central cadherin/immunoglobulin domains. In cnidarians, which have a well-defined ECM, Mega-TSP was expressed throughout embryogenesis in Nematostella vectensis, with dynamic endodermal expression in larvae and primary polyps and widespread ectodermal expression in adult Nematostella vectensis and Hydra magnipapillata polyps. Hydra Mega-TSP was also expressed during regeneration and siRNA-silencing of Mega-TSP in Hydra caused specific blockade of head regeneration. Molecular phylogenetic analyses based on the conserved TSP C-terminal region identified each of the TSP-related groups to form clades distinct from the canonical TSPs. We discuss models for the evolution of the newly defined TSP superfamily by gene duplications, radiation, and gene losses from a debut in the last metazoan common ancestor. Together, the data provide new insight into the evolution of ECM and tissue organization in metazoans.

Evolutionary Rates of Bumblebee Genomes Are Faster at Lower Elevations

Wed, 13 Mar 2019 00:00:00 GMT

Abstract
The importance of climate in determining biodiversity patterns has been well documented. However, the relationship between climate and rates of genetic evolution remains controversial. Latitude and elevation have been associated with rates of change in genetic markers such as cytochrome b. What is not known, however, is the strength of such associations and whether patterns found among these genes apply across entire genomes. Here, using bumblebee genetic data from seven subgenera of Bombus, we demonstrate that all species occupying warmer elevations have undergone faster genome-wide evolution than those in the same subgenera occupying cooler elevations. Our findings point to a critical biogeographic role in the relative rates of whole species evolution, potentially influencing global biodiversity patterns.

Cluster-Transition Determining Sites Underlying the Antigenic Evolution of Seasonal Influenza Viruses

Sat, 09 Mar 2019 00:00:00 GMT

Abstract
Seasonal influenza viruses undergo frequent mutations on their surface hemagglutinin (HA) proteins to escape the host immune response. In these mutations, a few key amino acid sites are associated with significant antigenic cluster transitions. To recognize the cluster-transition determining sites of seasonal influenza A/H3N2 and A/H1N1 viruses systematically and quickly, we developed a computational model named RECDS (recognition of cluster-transition determining sites) to evaluate the contribution of a specific amino acid site on the HA protein in the whole history of antigenic evolution. In RECDS, we ranked all of the HA sites by calculating the contribution scores derived from the forest of gradient boosting classifiers trained by various sequence- and structure-based features. With the RECDS model, we found out that the sites determining influenza antigenicity were mostly around the receptor-binding domain both for the influenza A/H3N2 and A/H1N1 viruses. Specifically, half of the cluster-transition determining sites of the influenza A/H1N1 virus were located in the vestigial esterase domain and basic path area on the HA, which indicated that the differential driving force of the antigenic evolution of the A/H1N1 virus refers to the A/H3N2 virus. Beyond that, the footprints of substitutions responsible for antigenic evolution were inferred according to the phylogenetic trees for the cluster-transition determining sites. The monitoring of genetic variation occurring at these cluster-transition determining sites in circulating influenza viruses on a large scale will potentially reduce current assay workloads in influenza surveillance and the selection of new influenza vaccine strains.

Mitochondrial Genomics Reveals Shared Phylogeographic Patterns and Demographic History among Three Periodical Cicada Species Groups

Fri, 08 Mar 2019 00:00:00 GMT

Abstract
The mass application of whole mitogenome (MG) sequencing has great potential for resolving complex phylogeographic patterns that cannot be resolved by partial mitogenomic sequences or nuclear markers. North American periodical cicadas (Magicicada) are well known for their periodical mass emergence at 17- and 13-year intervals in the north and south, respectively. Magicicada comprises three species groups, each containing one 17-year species and one or two 13-year species. Within each life cycle, single-aged cohorts, called broods, of periodical cicadas emerge in different years, and most broods contain members of all three species groups. There are 12 and three extant broods of 17- and 13-year cicadas, respectively. The phylogeographic relationships among the populations and broods within the species groups have not been clearly resolved. We analyzed 125 whole MG sequences from all broods and seven species within three species groups to ascertain the divergence history of the geographic and allochronic populations and their life cycles. Our mitogenomic phylogeny analysis clearly revealed that each of the three species groups had largely similar phylogeographic subdivisions (east, middle, and west) and demographic histories (rapid population expansion after the last glacial period). The mitogenomic phylogeny also partly resolved the brood diversification process, which could be explained by hypothetical temporary life cycle shifts, and showed that none of the 13- and 17-year species within the species groups was monophyletic, possibly due to gene flow between them. Our findings clearly reveal phylogeographic structures in the three Magicicada species groups, demonstrating the advantage of whole MG sequence data in phylogeographic studies.

Large-Scale Comparative Analysis of Codon Models Accounting for Protein and Nucleotide Selection

Thu, 07 Mar 2019 00:00:00 GMT

Abstract
There are numerous sources of variation in the rate of synonymous substitutions inside genes, such as direct selection on the nucleotide sequence, or mutation rate variation. Yet scans for positive selection rely on codon models which incorporate an assumption of effectively neutral synonymous substitution rate, constant between sites of each gene. Here we perform a large-scale comparison of approaches which incorporate codon substitution rate variation and propose our own simple yet effective modification of existing models. We find strong effects of substitution rate variation on positive selection inference. More than 70% of the genes detected by the classical branch-site model are presumably false positives caused by the incorrect assumption of uniform synonymous substitution rate. We propose a new model which is strongly favored by the data while remaining computationally tractable. With the new model we can capture signatures of nucleotide level selection acting on translation initiation and on splicing sites within the coding region. Finally, we show that rate variation is highest in the highly recombining regions, and we propose that recombination and mutation rate variation, such as high CpG mutation rate, are the two main sources of nucleotide rate variation. Although we detect fewer genes under positive selection in Drosophila than without rate variation, the genes which we detect contain a stronger signal of adaptation of dynein, which could be associated with Wolbachia infection. We provide software to perform positive selection analysis using the new model.

Identifying Lineage-Specific Targets of Natural Selection by a Bayesian Analysis of Genomic Polymorphisms and Divergence from Multiple Species

Wed, 06 Mar 2019 00:00:00 GMT

Abstract
We present a method that jointly analyzes the polymorphism and divergence sites in genomic sequences of multiple species to identify the genes under natural selection and pinpoint the occurrence time of selection to a specific lineage of the species phylogeny. This method integrates population genetics models using a Bayesian Poisson random field framework and combines information over all gene loci to boost the power for detecting selection. The method provides posterior distributions of the fitness effects of each gene along with parameters associated with the evolutionary history, including the species divergence time and effective population size of external species. The results of simulations demonstrate that our method achieves a high power to identify genes under positive selection for a wide range of selection intensity and provides reasonably accurate estimates of the population genetic parameters. The proposed method is applied to genomic sequences of humans, chimpanzees, gorillas, and orangutans and identifies a list of lineage-specific targets of positive selection. The positively selected genes in the human lineage are enriched in pathways of gene expression regulation, immune system and metabolism, etc. Our analysis provides insights into natural evolution in the coding regions of humans and great apes and thus serves as a basis for further molecular and functional studies.

Substructured Population Growth in the Ashkenazi Jews Inferred with Approximate Bayesian Computation

Wed, 06 Mar 2019 00:00:00 GMT

Abstract
The Ashkenazi Jews (AJ) are a population isolate sharing ancestry with both European and Middle Eastern populations that has likely resided in Central Europe since at least the tenth century. Between the 11th and 16th centuries, the AJ population expanded eastward leading to two culturally distinct communities in Western/Central and Eastern Europe. Our aim was to determine whether the western and eastern groups are genetically distinct, and if so, what demographic processes contributed to population differentiation. We used Approximate Bayesian Computation to choose among models of AJ history and to infer demographic parameter values, including divergence times, effective population sizes, and levels of gene flow. For the ABC analysis, we used allele frequency spectrum and identical by descent-based statistics to capture information on a wide timescale. We also mitigated the effects of ascertainment bias when performing ABC on SNP array data by jointly modeling and inferring SNP discovery. We found that the most likely model was population differentiation between Eastern and Western AJ ∼400 years ago. The differentiation between the Eastern and Western AJ could be attributed to more extreme population growth in the Eastern AJ (0.250 per generation) than the Western AJ (0.069 per generation).

Blast Fungal Genomes Show Frequent Chromosomal Changes, Gene Gains and Losses, and Effector Gene Turnover

Tue, 05 Mar 2019 00:00:00 GMT

Abstract
Pyricularia is a fungal genus comprising several pathogenic species causing the blast disease in monocots. Pyricularia oryzae, the best-known species, infects rice, wheat, finger millet, and other crops. As past comparative and population genomics studies mainly focused on isolates of P. oryzae, the genomes of the other Pyricularia species have not been well explored. In this study, we obtained a chromosomal-level genome assembly of the finger millet isolate P. oryzae MZ5-1-6 and also highly contiguous assemblies of Pyricularia sp. LS, P. grisea, and P. pennisetigena. The differences in the genomic content of repetitive DNA sequences could largely explain the variation in genome size among these new genomes. Moreover, we found extensive gene gains and losses and structural changes among Pyricularia genomes, including a large interchromosomal translocation. We searched for homologs of known blast effectors across fungal taxa and found that most avirulence effectors are specific to Pyricularia, whereas many other effectors share homologs with distant fungal taxa. In particular, we discovered a novel effector family with metalloprotease activity, distinct from the well-known AVR-Pita family. We predicted 751 gene families containing putative effectors in 7 Pyricularia genomes and found that 60 of them showed differential expression in the P. oryzae MZ5-1-6 transcriptomes obtained under experimental conditions mimicking the pathogen infection process. In summary, this study increased our understanding of the structural, functional, and evolutionary genomics of the blast pathogen and identified new potential effector genes, providing useful data for developing crops with durable resistance.

Emergence of a Chimeric Globin Pseudogene and Increased Hemoglobin Oxygen Affinity Underlie the Evolution of Aquatic Specializations in Sirenia

Mon, 04 Mar 2019 00:00:00 GMT

Abstract
As limits on O2 availability during submergence impose severe constraints on aerobic respiration, the oxygen binding globin proteins of marine mammals are expected to have evolved under strong evolutionary pressures during their land-to-sea transition. Here, we address this question for the order Sirenia by retrieving, annotating, and performing detailed selection analyses on the globin repertoire of the extinct Steller’s sea cow (Hydrodamalis gigas), dugong (Dugong dugon), and Florida manatee (Trichechus manatus latirostris) in relation to their closest living terrestrial relatives (elephants and hyraxes). These analyses indicate most loci experienced elevated nucleotide substitution rates during their transition to a fully aquatic lifestyle. While most of these genes evolved under neutrality or strong purifying selection, the rate of nonsynonymous/synonymous replacements increased in two genes (Hbz-T1 and Hba-T1) that encode the α-type chains of hemoglobin (Hb) during each stage of life. Notably, the relaxed evolution of Hba-T1 is temporally coupled with the emergence of a chimeric pseudogene (Hba-T2/Hbq-ps) that contributed to the tandemly linked Hba-T1 of stem sirenians via interparalog gene conversion. Functional tests on recombinant Hb proteins from extant and ancestral sirenians further revealed that the molecular remodeling of Hba-T1 coincided with increased Hb–O2 affinity in early sirenians. Available evidence suggests that this trait evolved to maximize O2 extraction from finite lung stores and suppress tissue O2 offloading, thereby facilitating the low metabolic intensities of extant sirenians. In contrast, the derived reduction in Hb–O2 affinity in (sub)Arctic Steller’s sea cows is consistent with fueling increased thermogenesis by these once colossal marine herbivores.

Polymorphism-Aware Species Trees with Advanced Mutation Models, Bootstrap, and Rate Heterogeneity

Sat, 02 Mar 2019 00:00:00 GMT

Abstract
Molecular phylogenetics has neglected polymorphisms within present and ancestral populations for a long time. Recently, multispecies coalescent based methods have increased in popularity, however, their application is limited to a small number of species and individuals. We introduced a polymorphism-aware phylogenetic model (PoMo), which overcomes this limitation and scales well with the increasing amount of sequence data whereas accounting for present and ancestral polymorphisms. PoMo circumvents handling of gene trees and directly infers species trees from allele frequency data. Here, we extend the PoMo implementation in IQ-TREE and integrate search for the statistically best-fit mutation model, the ability to infer mutation rate variation across sites, and assessment of branch support values. We exemplify an analysis of a hundred species with ten haploid individuals each, showing that PoMo can perform inference on large data sets. While PoMo is more accurate than standard substitution models applied to concatenated alignments, it is almost as fast. We also provide bmm-simulate, a software package that allows simulation of sequences evolving under PoMo. The new options consolidate the value of PoMo for phylogenetic analyses with population data.

Plasticity of Promoter-Core Sequences Allows Bacteria to Compensate for the Loss of a Key Global Regulatory Gene

Sat, 02 Mar 2019 00:00:00 GMT

Abstract
Transcription regulatory networks (TRNs) are of central importance for both short-term phenotypic adaptation in response to environmental fluctuations and long-term evolutionary adaptation, with global regulatory genes often being targets of natural selection in laboratory experiments. Here, we combined evolution experiments, whole-genome resequencing, and molecular genetics to investigate the driving forces, genetic constraints, and molecular mechanisms that dictate how bacteria can cope with a drastic perturbation of their TRNs. The crp gene, encoding a major global regulator in Escherichia coli, was deleted in four different genetic backgrounds, all derived from the Long-Term Evolution Experiment (LTEE) but with different TRN architectures. We confirmed that crp deletion had a more deleterious effect on growth rate in the LTEE-adapted genotypes; and we showed that the ptsG gene, which encodes the major glucose-PTS transporter, gained CRP (cyclic AMP receptor protein) dependence over time in the LTEE. We then further evolved the four crp-deleted genotypes in glucose minimal medium, and we found that they all quickly recovered from their growth defects by increasing glucose uptake. We showed that this recovery was specific to the selective environment and consistently relied on mutations in the cis-regulatory region of ptsG, regardless of the initial genotype. These mutations affected the interplay of transcription factors acting at the promoters, changed the intrinsic properties of the existing promoters, or produced new transcription initiation sites. Therefore, the plasticity of even a single promoter region can compensate by three different mechanisms for the loss of a key regulatory hub in the E. coli TRN.

Shared Ancient Sex Chromosomes in Varanids, Beaded Lizards, and Alligator Lizards

Tue, 05 Feb 2019 00:00:00 GMT

Abstract
Sex determination in varanids, Gila monsters, beaded lizards, and other anguimorphan lizards is still poorly understood. Sex chromosomes were reported only in a few species based solely on cytogenetics, which precluded assessment of their homology. We uncovered Z-chromosome-specific genes in varanids from their transcriptomes. Comparison of differences in gene copy numbers between sexes across anguimorphan lizards and outgroups revealed that homologous differentiated ZZ/ZW sex chromosomes are present in Gila monsters, beaded lizards, alligator lizards, and a wide phylogenetic spectrum of varanids. However, these sex chromosomes are not homologous to those known in other amniotes. We conclude that differentiated sex chromosomes were already present in the common ancestor of Anguimorpha living in the early Cretaceous or even in the Jurassic Period, 115–180 Ma, placing anguimorphan sex chromosomes among the oldest known in vertebrates. The analysis of transcriptomes of Komodo dragon (Varanus komodoensis) showed that the expression levels of genes linked to anguimorphan sex chromosomes are not balanced between sexes. Besides expanding our knowledge on vertebrate sex chromosome evolution, our study has important practical relevance for breeding and ecological studies. We introduce the first, widely applicable technique of molecular sexing in varanids, Gila monsters, and beaded lizards, where reliable determination of sex based on external morphology is dubious even in adults.

GBE | Most Read

Genome Biology & Evolution

Highlight: Contribution of Ultra-Small Microbes to Global Carbon Cycles

Tue, 14 May 2019 00:00:00 GMT

In the last five years, scientists have discovered a staggering number of ultra-small microbes, doubling the number of known lineages. Because of their extremely small size, these nanoorganisms are thought to have reduced genomes and to lack the proteins needed to carry out more complex metabolic processes. As reported in this issue of Genome Biology and Evolution (Lannes et al. 2019), however, researchers at Sorbonne University and The Open University show that some ultra-small microbes do indeed participate in complex metabolisms and make greater contributions to global carbon cycles than previously realized.

The Whole-Genome Sequence of the Coral Acropora millepora

Fri, 26 Apr 2019 00:00:00 GMT

Acropora milleporaAcropora digitiferagenomeWGS

Complete Genome Sequences of Xanthomonas axonopodis pv. glycines Isolates from the United States and Thailand Reveal Conserved Transcription Activator-Like Effectors

Fri, 26 Apr 2019 00:00:00 GMT

Abstract
To compare overall genome structure and transcription activator-like effector content, we completely sequenced Xanthomonas axonopodis pv. glycines strain 12-2, isolated in 1992 in Thailand, and strain EB08, isolated in 2008 in the United States (Iowa) using PacBio technology. We reassembled the genome sequence for a second US strain, 8ra, derived from a 1980 Iowa isolate, from existing PacBio reads. Despite geographic and temporal separation, the three genomes are highly syntenous, and their transcription activator-like effector repertoires are highly conserved.

Fine Scale Genomic Signals of Admixture and Alien Introgression among Asian Rice Landraces

Tue, 16 Apr 2019 00:00:00 GMT

Abstract
Modern rice cultivars are adapted to a range of environmental conditions and human preferences. At the root of this diversity is a marked genetic structure, owing to multiple foundation events. Admixture and recurrent introgression from wild sources have played upon this base to produce the myriad adaptations existing today. Genome-wide studies bring support to this idea, but understanding the history and nature of particular genetic adaptations requires the identification of specific patterns of genetic exchange. In this study, we explore the patterns of haplotype similarity along the genomes of a subset of rice cultivars available in the 3,000 Rice Genomes data set. We begin by establishing a custom method of classification based on a combination of dimensionality reduction and kernel density estimation. Through simulations, the behavior of this classifier is studied under scenarios of varying genetic divergence, admixture, and alien introgression. Finally, the method is applied to local haplotypes along the genome of a Core set of Asian Landraces. Taking the Japonica, Indica, and cAus groups as references, we find evidence of reciprocal introgressions covering 2.6% of reference genomes on average. Structured signals of introgression among reference accessions are discussed. We extend the analysis to elucidate the genetic structure of the group circum-Basmati: we delimit regions of Japonica, cAus, and Indica origin, as well as regions outlier to these groups (13% on average). Finally, the approach used highlights regions of partial to complete loss of structure that can be attributed to selective pressures during domestication.

Within-Host Adaptation Mediated by Intergenic Evolution in Pseudomonas aeruginosa

Sat, 13 Apr 2019 00:00:00 GMT

Abstract
Bacterial pathogens evolve during the course of infection as they adapt to the selective pressures that confront them inside the host. Identification of adaptive mutations and their contributions to pathogen fitness remains a central challenge. Although mutations can either target intergenic or coding regions in the pathogen genome, studies of host adaptation have focused predominantly on molecular evolution within coding regions, whereas the role of intergenic mutations remains unclear. Here, we address this issue and investigate the extent to which intergenic mutations contribute to the evolutionary response of a clinically important bacterial pathogen, Pseudomonas aeruginosa, to the host environment, and whether intergenic mutations have distinct roles in host adaptation. We characterize intergenic evolution in 44 clonal lineages of P. aeruginosa and identify 77 intergenic regions in which parallel evolution occurs. At the genetic level, we find that mutations in regions under selection are located primarily within regulatory elements upstream of transcriptional start sites. At the functional level, we show that some of these mutations both increase or decrease transcription of genes and are directly responsible for evolution of important pathogenic phenotypes including antibiotic sensitivity. Importantly, we find that intergenic mutations facilitate essential genes to become targets of evolution. In summary, our results highlight the evolutionary significance of intergenic mutations in creating host-adapted strains, and that intergenic and coding regions have different qualitative contributions to this process.

Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection

Sat, 13 Apr 2019 00:00:00 GMT

Abstract
The evolution of mitochondrial genomes and their population-genetic environment among unicellular eukaryotes are understudied. Ciliate mitochondrial genomes exhibit a unique combination of characteristics, including a linear organization and the presence of multiple genes with no known function or detectable homologs in other eukaryotes. Here we study the variation of ciliate mitochondrial genomes both within and across 13 highly diverged Paramecium species, including multiple species from the P. aurelia species complex, with four outgroup species: P. caudatum, P. multimicronucleatum, and two strains that may represent novel related species. We observe extraordinary conservation of gene order and protein-coding content in Paramecium mitochondria across species. In contrast, significant differences are observed in tRNA content and copy number, which is highly conserved in species belonging to the P. aurelia complex but variable among and even within the other Paramecium species. There is an increase in GC content from ∼20% to ∼40% on the branch leading to the P. aurelia complex. Patterns of polymorphism in population-genomic data and mutation-accumulation experiments suggest that the increase in GC content is primarily due to changes in the mutation spectra in the P. aurelia species. Finally, we find no evidence of recombination in Paramecium mitochondria and find that the mitochondrial genome appears to experience either similar or stronger efficacy of purifying selection than the nucleus.

Evolution of Hominin Polyunsaturated Fatty Acid Metabolism: From Africa to the New World

Wed, 03 Apr 2019 00:00:00 GMT

Abstract
The metabolic conversion of dietary omega-3 and omega-6 18 carbon (18C) to long chain (>20 carbon) polyunsaturated fatty acids (LC-PUFAs) is vital for human life. The rate-limiting steps of this process are catalyzed by fatty acid desaturase (FADS) 1 and 2. Therefore, understanding the evolutionary history of the FADS genes is essential to our understanding of hominin evolution. The FADS genes have two haplogroups, ancestral and derived, with the derived haplogroup being associated with more efficient LC-PUFA biosynthesis than the ancestral haplogroup. In addition, there is a complex global distribution of these haplogroups that is suggestive of Neanderthal introgression. We confirm that Native American ancestry is nearly fixed for the ancestral haplogroup, and replicate a positive selection signal in Native Americans. This positive selection potentially continued after the founding of the Americas, although simulations suggest that the timing is dependent on the allele frequency of the ancestral Beringian population. We also find that the Neanderthal FADS haplotype is more closely related to the derived haplogroup and the Denisovan clusters closer to the ancestral haplogroup. Furthermore, the derived haplogroup has a time to the most recent common ancestor of 688,474 years before present. These results support an ancient polymorphism, as opposed to Neanderthal introgression, forming in the FADS region during the Pleistocene with possibly differential selection pressures on both haplogroups. The near fixation of the ancestral haplogroup in Native American ancestry calls for future studies to explore the potential health risk of associated low LC-PUFA levels in these populations.