Featured News

COVID19 and SMBE2020

Dear SMBE Members:

At this time, we are still planning to hold our annual meeting this summer in beautiful Québec City. Accordingly, we recommend that you register for the meeting and book your hotel room. Registration and hotel room deposits will be refunded in the event the meeting were cancelled by SMBE. However, if you have not already booked your flights or ground transportation, you may consider purchasing trip insurance or fares that allow for refunds, if available. Note that many airlines are introducing incentives to book tickets; this is a dynamic situation and offers vary by carrier, so investigate carefully.

We look forward to seeing you this summer in Canada!

Marta L. Wayne
President, SMBE

Continue Reading →

  • Friday, March 06, 2020
  • Comments (0)

Late-breaking Abstract submission deadline for posters extended to 30 March

The abstract submission deadline for posters only has been extended to 30th March 2020 23:59 GMT. Please be aware that this deadline will not be extended and that applications for SMBE awards 2020 can now no longer be considered. Abstracts should be no longer than 2500 characters (~250 words), with a title no longer than 300 characters. Full details on abstract topics, guidance and the submission portal can be found here.


A range of sponsorship opportunities have been developed for the meeting, if interested please contact SMBE2020@mci-group.com.


For any queries over abstracts or registration, please contact SMBE2020@mci-group.com.

Continue Reading →

  • Tuesday, February 11, 2020
  • Comments (0)

Call for Best Graduate Student Paper of 2019 Nominations

SMBE is calling for nominations for Best Graduate Student Papers of 2019. These awards provide recognition for outstanding papers in both our SMBE journals,  Molecular Biology & Evolution (MBE) and Genome Biology & Evolution (GBE). There will be one Best Graduate Student Paper award for each journal.

All articles published in the calendar year 2019 are eligible for nomination. This corresponds to papers published in the printed volume 36 in MBE and volume 11 in GBE. Please see below for additional information on eligibility.

Winners will be given a certificate, a prize of $2,000 and a travel award to either the 2020 or 2021 SMBE meeting.

Eligibility & Nomination

  1. All articles published in the two SMBE journals, Molecular Biology & Evolution and Genome Biology & Evolution (one prize for each journal), in the calendar year 2019 are automatically eligible if the final publication date of the nominated paper is not more than two years later than the date of the nominee's Ph.D.
  2. The nominated graduate student must be the first author or joint first-author of the nominated paper.
  3. An article and its first author can be nominated by anyone; self-nominations are acceptable.
  4. A signed letter from the Ph.D. advisor, MSc advisor, or equivalent, confirming that the paper was part of the nominee’s thesis or graduate work is required.
  5. The deadline for submitting nominations is March 11, 2020.

How to Enter

Please send the name of the nominee, a scan of the signed advisor letter, and the name of the paper for which the award is to be considered as a SINGLE PDF to smbe@allenpress.com. Please use the email subject line "MBE/GBE Best Student Paper Nomination", deleting journal name as appropriate.

Continue Reading →

  • Wednesday, January 15, 2020
  • Comments (0)

SMBE 2020, June 28th-July 2nd 2020, Québec City, QC, Canada – Registration Launch and Abstracts Submission Deadline

We are delighted to announce that registration for SMBE 2020 is now live. SMBE 2020 is taking place in Québec city, QC, Canada on June 28th-July 2nd 2020 at the Québec Convention Center. Full details on the symposia programme and confirmed keynote speakers can be viewed here.

Information on the registration fees can be viewed here. Register before the early bird deadline on April 1st, 2020 in order to secure discounted registration rates.

Please note that in order to receive a discounted member-rate registration you will be asked to provide your SMBE member number. Active members were sent an email that includes their member number.

You can book your accommodation from a range of city centre properties from inside the registration system.

As always SMBE are keen to ensure good international representation. Support will be provided to all delegates that may require additional documentation in order to secure a visa to Canada. Please click here to check if you require a visa for Canada. You can request support for your Visa application within the registration portal. Select the Visa application support letter and submit the required details. You will then receive a covering letter confirming your attendance at SMBE 2020.

Childcare facility will be provided on-site for SMBE 2020 delegates. During the registration process please advise whether you would like to make use of the facility and add details on the age of your child. Further details will be shared on the facility nearer the time.

Attendees can apply for Carer Awards as part of conference registration rather than abstract submission, or by email to smbe.contact@gmail.com if an earlier response is needed. SMBE will make available up to $2000 to SMBE members with children or dependent adults (including adult children with a disability or elderly relatives) to spend as they wish to facilitate the member’s attendance at the annual SMBE meeting. Examples of eligible expenses include (but are not limited to) providing airfare for your child or for your caregiver to accompany you, flying a relative out to help with care at your home while you’re at the meeting, or extra help paying for on-site daycare. All other awards can be applied for during the Abstract submission portal.

Abstract and Award submission deadline.

The abstract submission deadline is fast approaching. The deadline for abstracts is 20th January 2020 23:59 GMT. Please be aware that the deadline will not be extended. Abstracts should be no longer than 2500 characters (~250 words), with a title no longer than 300 characters. Full details on abstract topics, guidance and the submission portal can be found here.

A range of

Continue Reading →

  • Friday, December 20, 2019
  • Comments (0)

Nominations Due for Prestigious SMBE Awards

SMBE is now calling for nominations to award the Prizes for Early-Career, Mid-Career, Lifetime Research Achievements, and for Service to the SMBE Community. Please consider nominating those of your colleagues you believe deserve to be rewarded for their extraordinary achievements and dedication to the field.

Briefly, the Junior Award for Independent Research is intended for nominees in tenure-track positions at the Assistant Professor level or equivalent; the Mid-Career Award is for the research contributions of faculty nearing promotion to Full Professor or in the early stages as a Full Professor; the Lifetime Contribution Award is for exceptional contributions to the published literature in the field of molecular biology and evolution; and the Community Service Award recognizes outstanding efforts on behalf of the Society and the broader scientific community. Awardees will receive a cash prize and a trip to the upcoming SMBE Annual Meeting in Québec City, Canada (June 28 to July 2, 2020).

Nominations require a nomination letter, which should clearly indicate the award under consideration and also serve as a recommendation letter; a separate one-page summary of the nominee’s qualifications for the award; a CV of the nominee; and an additional letter of recommendation. Self-nomination is not allowed. The nominator need not be an SMBE member, but the nominee must be a member of SMBE to be considered for the award.

The materials should be compiled into a single PDF file, and should be emailed to smbe@allenpress.com before 19 January 2020.

For more information on each award and the specific application details please see the links below:

Allan Wilson Junior Award for Independent Research

Margaret Dayhoff Mid-Career Award

Community Service Award

Motoo K

Continue Reading →

  • Friday, December 13, 2019
  • Comments (0)

Call for Proposals to Host SMBE 2023 - Deadline 30 November 2019

Want to meet like-minded colleagues from all over the world?

Wish you could have an international conference in your field closer to home?

SMBE is looking for a local host for its 2023 international meeting. Informal expressions of interest should be from a prospective local organizing committee of scientists headed by an SMBE member, and should reach SMBE President-Elect Marta Wayne by 30 November 2019. Full proposals will need to be submitted using the SMBE template by 30 April 2020. Please email your proposal to Smbe.contact@gmail.com.

For details of meeting organization, please see the SMBE Conference Guidelines (and specifically Appendix 2 which outlines the format of proposals).

The primary role of the local organizing committee will be to plan the scientific programme. All other aspects of the organization will be done in association with SMBE representatives and a professional conference organizer appointed by SMBE.

SMBE rotates its meetings geographically to encourage international participation. For 2023, we are particularly requesting proposals from North America. The next three years' meetings will be in Quebec, Canada (2020), Auckland, NZ (2021) and Ferrera, Italy (2022).

Please note that SMBE is not interested in proposals from professional conference organizers.

Looking forward to hearing from you.


Marta Wayne
President-Elect, SMBE

Continue Reading →

  • Wednesday, October 30, 2019
  • Comments (0)


Forgot username/password?

Registration and Membership

Non-Members: You must Register for an account to purchase a membership and conduct other transactions. Future visits to the website will only require login.

After login or registration: You may conduct online transactions such as joining or renewing a membership, registering for an annual meeting and making donations.


The Society for Molecular Biology and Evolution is an international organization whose goals are to provide facilities for association and communication among molecular evolutionists and to further the goals of molecular evolution, as well as its practitioners and teachers. In order to accomplish these goals, the Society publishes two peer-reviewed journals, Molecular Biology and Evolution and Genome Biology and Evolution. The Society sponsors an annual meeting, as well as smaller satellite meetings or workshop on important, focused, and timely topics. It also confers honors and awards to students and researchers.


SMBE is a member of the Scientific Society Publisher Alliance

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

Corrigendum to: Bacterial Group II Intron Genomic Neighborhoods Reflect Survival Strategies: Hiding and Hijacking

Fri, 04 Sep 2020 00:00:00 GMT

Mol. Biol. Evol., doi:

Khoe-San Genomes Reveal Unique Variation and Confirm the Deepest Population Divergence in Homo sapiens

Wed, 22 Jul 2020 00:00:00 GMT

The southern African indigenous Khoe-San populations harbor the most divergent lineages of all living peoples. Exploring their genomes is key to understanding deep human history. We sequenced 25 full genomes from five Khoe-San populations, revealing many novel variants, that 25% of variants are unique to the Khoe-San, and that the Khoe-San group harbors the greatest level of diversity across the globe. In line with previous studies, we found several gene regions with extreme values in genome-wide scans for selection, potentially caused by natural selection in the lineage leading to Homo sapiens and more recent in time. These gene regions included immunity-, sperm-, brain-, diet-, and muscle-related genes. When accounting for recent admixture, all Khoe-San groups display genetic diversity approaching the levels in other African groups and a reduction in effective population size starting around 100,000 years ago. Hence, all human groups show a reduction in effective population size commencing around the time of the Out-of-Africa migrations, which coincides with changes in the paleoclimate records, changes that potentially impacted all humans at the time.

Gene Loss Predictably Drives Evolutionary Adaptation

Mon, 13 Jul 2020 00:00:00 GMT

Loss of gene function is common throughout evolution, even though it often leads to reduced fitness. In this study, we systematically evaluated how an organism adapts after deleting genes that are important for growth under oxidative stress. By evolving, sequencing, and phenotyping over 200 yeast lineages, we found that gene loss can enhance an organism’s capacity to evolve and adapt. Although gene loss often led to an immediate decrease in fitness, many mutants rapidly acquired suppressor mutations that restored fitness. Depending on the strain’s genotype, some ultimately even attained higher fitness levels than similarly adapted wild-type cells. Further, cells with deletions in different modules of the genetic network followed distinct and predictable mutational trajectories. Finally, losing highly connected genes increased evolvability by facilitating the emergence of a more diverse array of phenotypes after adaptation. Together, our findings show that loss of specific parts of a genetic network can facilitate adaptation by opening alternative evolutionary paths.

Comparative Genomics Reveals Evolution of a Beak Morphology Locus in a High-Altitude Songbird

Sat, 27 Jun 2020 00:00:00 GMT

The Ground Tit (Pseudopodoces humilis) has lived on the Qinghai-Tibet Plateau for ∼5.7 My and has the highest altitudinal distribution among all parids. This species has evolved an elongated beak in response to long-term selection imposed by ground-foraging and cavity-nesting habits, yet the genetic basis for beak elongation remains unknown. Here, we perform genome-wide analyses across 14 parid species and identify 25 highly divergent genomic regions that are significantly associated with beak length, finding seven candidate genes involved in bone morphogenesis and remolding. Neutrality tests indicate that a model allowing for a selective sweep in the highly conserved COL27A1 gene best explains variation in beak length. We also identify two nonsynonymous fixed mutations in the collagen domain that are predicted to be functionally deleterious yet may have facilitated beak elongation. Our study provides evidence of adaptive alleles in COL27A1 with major effects on beak elongation of Ps. humilis.

Micro-RNA Clusters Integrate Evolutionary Constraints on Expression and Target Affinities: The miR-6/5/4/286/3/309 Cluster in Drosophila

Wed, 10 Jun 2020 00:00:00 GMT

A striking feature of micro‐RNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a micro‐RNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this micro‐RNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of micro‐RNA cluster members were also constructed. Expression of individual micro‐RNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient micro‐RNAs together (miR-5/4/286/3/309) or more recently evolved clustered micro‐RNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed downregulation of leg-patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of micro‐RNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct micro‐RNAs. Considered together, the micro‐RNA targets and the evolutionary ages of each micro‐RNA in the cluster demonstrate the importance of micro‐RNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing micro‐RNAs.Key words: micro‐RNA, cluster, evolution.

More Than One-to-Four via 2R: Evidence of an Independent Amphioxus Expansion and Two-Gene Ancestral Vertebrate State for MyoD-Related Myogenic Regulatory Factors (MRFs)

Wed, 10 Jun 2020 00:00:00 GMT

The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.

Collagen Sequence Analysis Reveals Evolutionary History of Extinct West Indies Nesophontes (Island-Shrews)

Thu, 04 Jun 2020 00:00:00 GMT

Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this study, we demonstrate the ability to use collagen sequence analyses via proteomics to assist species delimitation as a foundation for informing evolutionary patterns. We uncover biogeographic information of an enigmatic and recently extinct lineage of Nesophontes across their range on the Caribbean islands. First, evolutionary relationships reconstructed from collagen sequences reaffirm the affinity of Nesophontes and Solenodon as sister taxa within Solenodonota. This relationship helps lay the foundation for testing geographical isolation hypotheses across islands within the Greater Antilles, including movement from Cuba toward Hispaniola. Second, our results are consistent with Cuba having just two species of Nesophontes (N. micrus and N. major) that exhibit intrapopulation morphological variation. Finally, analysis of the recently described species from the Cayman Islands (N. hemicingulus) indicates that it is a closer relative to N. major rather than N. micrus as previously speculated. This proteomic sequencing improves our understanding of the origin, evolution, and distribution of this extinct mammal lineage, particularly with respect to the approximate timing of speciation. Such knowledge is vital for this biodiversity hotspot, where the magnitude of recent extinctions may obscure true estimates of species richness in the past.

Evolutionary Genomics at the Human–Environment Interface in Africa

Wed, 03 Jun 2020 00:00:00 GMT

We report on the first meeting of SMBE in Africa. SMBE Malawi was initiated to bring together African and international researchers who use genetics or genomics to study natural systems impacted by human activities. The goals of this conference were 1) to reach a world-class standard of science with a large number of contributions from Africa, 2) to initiate exchange between African and international researchers, and 3) to identify challenges and opportunities for evolutionary genomics research in Africa. As repored, we think that we have achieved these goals and make suggestions on the way forward for African evolutionary genomics research.

PIQMEE: Bayesian Phylodynamic Method for Analysis of Large Data Sets with Duplicate Sequences

Wed, 03 Jun 2020 00:00:00 GMT

Next-generation sequencing of pathogen quasispecies within a host yields data sets of tens to hundreds of unique sequences. However, the full data set often contains thousands of sequences, because many of those unique sequences have multiple identical copies. Data sets of this size represent a computational challenge for currently available Bayesian phylogenetic and phylodynamic methods. Through simulations, we explore how large data sets with duplicate sequences affect the speed and accuracy of phylogenetic and phylodynamic analysis within BEAST 2. We show that using unique sequences only leads to biases, and using a random subset of sequences yields imprecise parameter estimates. To overcome these shortcomings, we introduce PIQMEE, a BEAST 2 add-on that produces reliable parameter estimates from full data sets with increased computational efficiency as compared with the currently available methods within BEAST 2. The principle behind PIQMEE is to resolve the tree structure of the unique sequences only, while simultaneously estimating the branching times of the duplicate sequences. Distinguishing between unique and duplicate sequences allows our method to perform well even for very large data sets. Although the classic method converges poorly for data sets of 6,000 sequences when allowed to run for 7 days, our method converges in slightly more than 1 day. In fact, PIQMEE can handle data sets of around 21,000 sequences with 20 unique sequences in 14 days. Finally, we apply the method to a real, within-host HIV sequencing data set with several thousand sequences per patient.

Dental Calculus as a Tool to Study the Evolution of the Mammalian Oral Microbiome

Thu, 28 May 2020 00:00:00 GMT

Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment.

Venom Systems as Models for Studying the Origin and Regulation of Evolutionary Novelties

Wed, 27 May 2020 00:00:00 GMT

A central goal in biology is to determine the ways in which evolution repeats itself. One of the most remarkable examples in nature of convergent evolutionary novelty is animal venom. Across diverse animal phyla, various specialized organs and anatomical structures have evolved from disparate developmental tissues to perform the same function, that is, produce and deliver a cocktail of potent molecules to subdue prey or predators. Venomous organisms therefore offer unique opportunities to investigate the evolutionary processes of convergence of key adaptive traits, and the molecular mechanisms underlying the emergence of novel genes, cells, and tissues. Indeed, some venomous species have already proven to be highly amenable as models for developmental studies, and recent work with venom gland organoids provides manipulatable systems for directly testing important evolutionary questions. Here, we provide a synthesis of the current knowledge that could serve as a starting point for the establishment of venom systems as new models for evolutionary and molecular biology. In particular, we highlight the potential of various venomous species for the study of cell differentiation and cell identity, and the regulatory dynamics of rapidly evolving, highly expressed, tissue-specific, gene paralogs. We hope that this review will encourage researchers to look beyond traditional study organisms and consider venom systems as useful tools to explore evolutionary novelties.

Gradients Do Grow on Trees: A Linear-Time O(N)-Dimensional Gradient for Statistical Phylogenetics

Wed, 27 May 2020 00:00:00 GMT

Calculation of the log-likelihood stands as the computational bottleneck for many statistical phylogenetic algorithms. Even worse is its gradient evaluation, often used to target regions of high probability. Order O(N)-dimensional gradient calculations based on the standard pruning algorithm require O(N2) operations, where N is the number of sampled molecular sequences. With the advent of high-throughput sequencing, recent phylogenetic studies have analyzed hundreds to thousands of sequences, with an apparent trend toward even larger data sets as a result of advancing technology. Such large-scale analyses challenge phylogenetic reconstruction by requiring inference on larger sets of process parameters to model the increasing data heterogeneity. To make these analyses tractable, we present a linear-time algorithm for O(N)-dimensional gradient evaluation and apply it to general continuous-time Markov processes of sequence substitution on a phylogenetic tree without a need to assume either stationarity or reversibility. We apply this approach to learn the branch-specific evolutionary rates of three pathogenic viruses: West Nile virus, Dengue virus, and Lassa virus. Our proposed algorithm significantly improves inference efficiency with a 126- to 234-fold increase in maximum-likelihood optimization and a 16- to 33-fold computational performance increase in a Bayesian framework.

Reconstructing the Evolutionary History of Chromosomal Races on Islands: A Genome-Wide Analysis of Natural House Mouse Populations

Mon, 25 May 2020 00:00:00 GMT

Chromosomal evolution is widely considered to be an important driver of speciation, as karyotypic reorganization can bring about the establishment of reproductive barriers between incipient species. One textbook example for genetic mechanisms of speciation are large-scale chromosomal rearrangements such as Robertsonian (Rb) fusions, a common class of structural variants that can drastically change the recombination landscape by suppressing crossing-over and influence gene expression by altering regulatory networks. Here, we explore the population structure and demographic patterns of a well-known house mouse Rb system in the Aeolian archipelago in Southern Italy using genome-wide data. By analyzing chromosomal regions characterized by different levels of recombination, we trace the evolutionary history of a set of Rb chromosomes occurring in different geographical locations and test whether chromosomal fusions have a single shared origin or occurred multiple times. Using a combination of phylogenetic and population genetic approaches, we find support for multiple, independent origins of three focal Rb chromosomes. The elucidation of the demographic patterns of the mouse populations within the Aeolian archipelago shows that an interplay between fixation of newly formed Rb chromosomes and hybridization events has contributed to shaping their current karyotypic distribution. Overall, our results illustrate that chromosome structure is much more dynamic than anticipated and emphasize the importance of large-scale chromosomal translocations in speciation.

Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish

Thu, 21 May 2020 00:00:00 GMT

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.

Evolution of the Insecticide Target Rdl in African Anopheles Is Driven by Interspecific and Interkaryotypic Introgression

Thu, 21 May 2020 00:00:00 GMT

The evolution of insecticide resistance mechanisms in natural populations of Anopheles malaria vectors is a major public health concern across Africa. Using genome sequence data, we study the evolution of resistance mutations in the resistance to dieldrin locus (Rdl), a GABA receptor targeted by several insecticides, but most notably by the long-discontinued cyclodiene, dieldrin. The two Rdl resistance mutations (296G and 296S) spread across West and Central African Anopheles via two independent hard selective sweeps that included likely compensatory nearby mutations, and were followed by a rare combination of introgression across species (from A. gambiae and A. arabiensis to A. coluzzii) and across nonconcordant karyotypes of the 2La chromosomal inversion. Rdl resistance evolved in the 1950s as the first known adaptation to a large-scale insecticide-based intervention, but the evolutionary lessons from this system highlight contemporary and future dangers for management strategies designed to combat development of resistance in malaria vectors.

Collateral Toxicity Limits the Evolution of Bacterial Release Factor 2 toward Total Omnipotence

Thu, 21 May 2020 00:00:00 GMT

When new genes evolve through modification of existing genes, there are often tradeoffs between the new and original functions, making gene duplication and amplification necessary to buffer deleterious effects on the original function. We have used experimental evolution of a bacterial strain lacking peptide release factor 1 (RF1) in order to study how peptide release factor 2 (RF2) evolves to compensate the loss of RF1. As expected, amplification of the RF2-encoding gene prfB to high copy number was a rapid initial response, followed by the appearance of mutations in RF2 and other components of the translation machinery. Characterization of the evolved RF2 variants by their effects on bacterial growth rate, reporter gene expression, and in vitro translation termination reveals a complex picture of reduced discrimination between the cognate and near-cognate stop codons and highlights a functional tradeoff that we term “collateral toxicity.” We suggest that this type of tradeoff may be a more serious obstacle in new gene evolution than the more commonly discussed evolutionary tradeoffs between “old” and “new” functions of a gene, as it cannot be overcome by gene copy number changes. Further, we suggest a model for how RF2 autoregulation responds to alterations in the demand not only for RF2 activity but also for RF1 activity.

Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications

Mon, 18 May 2020 00:00:00 GMT

We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene’s exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.

The Evolution of Human Cancer Gene Duplications across Mammals

Mon, 18 May 2020 00:00:00 GMT

Cancer is caused by genetic alterations that affect cellular fitness, and multicellular organisms have evolved mechanisms to suppress cancer such as cell cycle checkpoints and apoptosis. These pathways may be enhanced by the addition of tumor suppressor gene paralogs or deletion of oncogenes. To provide insights to the evolution of cancer suppression across the mammalian radiation, we estimated copy numbers for 548 human tumor suppressor gene and oncogene homologs in 63 mammalian genome assemblies. The naked mole rat contained the most cancer gene copies, consistent with the extremely low rates of cancer found in this species. We found a positive correlation between a species’ cancer gene copy number and its longevity, but not body size, contrary to predictions from Peto’s Paradox. Extremely long-lived mammals also contained more copies of caretaker genes in their genomes, suggesting that the maintenance of genome integrity is an essential form of cancer prevention in long-lived species. We found the strongest association between longevity and copy numbers of genes that are both germline and somatic tumor suppressor genes, suggesting that selection has acted to suppress both hereditary and sporadic cancers. We also found a strong relationship between the number of tumor suppressor genes and the number of oncogenes in mammalian genomes, suggesting that complex regulatory networks mediate the balance between cell proliferation and checks on tumor progression. This study is the first to investigate cancer gene expansions across the mammalian radiation and provides a springboard for potential human therapies based on evolutionary medicine.

Physical Constraints on Epistasis

Mon, 18 May 2020 00:00:00 GMT

Living systems evolve one mutation at a time, but a single mutation can alter the effect of subsequent mutations. The underlying mechanistic determinants of such epistasis are unclear. Here, we demonstrate that the physical dynamics of a biological system can generically constrain epistasis. We analyze models and experimental data on proteins and regulatory networks. In each, we find that if the long-time physical dynamics is dominated by a slow, collective mode, then the dimensionality of mutational effects is reduced. Consequently, epistatic coefficients for different combinations of mutations are no longer independent, even if individually strong. Such epistasis can be summarized as resulting from a global nonlinearity applied to an underlying linear trait, that is, as global epistasis. This constraint, in turn, reduces the ruggedness of the sequence-to-function map. By providing a generic mechanistic origin for experimentally observed global epistasis, our work suggests that slow collective physical modes can make biological systems evolvable.

The Architecture of Metabolism Maximizes Biosynthetic Diversity in the Largest Class of Fungi

Mon, 18 May 2020 00:00:00 GMT

Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or “specialized” metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class.

A Likelihood Approach for Uncovering Selective Sweep Signatures from Haplotype Data

Mon, 11 May 2020 00:00:00 GMT

Selective sweeps are frequent and varied signatures in the genomes of natural populations, and detecting them is consequently important in understanding mechanisms of adaptation by natural selection. Following a selective sweep, haplotypic diversity surrounding the site under selection decreases, and this deviation from the background pattern of variation can be applied to identify sweeps. Multiple methods exist to locate selective sweeps in the genome from haplotype data, but none leverages the power of a model-based approach to make their inference. Here, we propose a likelihood ratio test statistic T to probe whole-genome polymorphism data sets for selective sweep signatures. Our framework uses a simple but powerful model of haplotype frequency spectrum distortion to find sweeps and additionally make an inference on the number of presently sweeping haplotypes in a population. We found that the T statistic is suitable for detecting both hard and soft sweeps across a variety of demographic models, selection strengths, and ages of the beneficial allele. Accordingly, we applied the T statistic to variant calls from European and sub-Saharan African human populations, yielding primarily literature-supported candidates, including LCT, RSPH3, and ZNF211 in CEU, SYT1, RGS18, and NNT in YRI, and HLA genes in both populations. We also searched for sweep signatures in Drosophila melanogaster, finding expected candidates at Ace, Uhg1, and Pimet. Finally, we provide open-source software to compute the T statistic and the inferred number of presently sweeping haplotypes from whole-genome data.

The Drosophila Y Chromosome Affects Heterochromatin Integrity Genome-Wide

Wed, 25 Mar 2020 00:00:00 GMT

The Drosophila Y chromosome is gene poor and mainly consists of silenced, repetitive DNA. Nonetheless, the Y influences expression of hundreds of genes genome-wide, possibly by sequestering key components of the heterochromatin machinery away from other positions in the genome. To test the influence of the Y chromosome on the genome-wide chromatin landscape, we assayed the genomic distribution of histone modifications associated with gene activation (H3K4me3) or heterochromatin (H3K9me2 and H3K9me3) in fruit flies with varying sex chromosome complements (X0, XY, and XYY males; XX and XXY females). Consistent with the general deficiency of active chromatin modifications on the Y, we find that Y gene dose has little influence on the genomic distribution of H3K4me3. In contrast, both the presence and the number of Y chromosomes strongly influence genome-wide enrichment patterns of repressive chromatin modifications. Highly repetitive regions such as the pericentromeres, the dot, and the Y chromosome (if present) are enriched for heterochromatic modifications in wildtype males and females, and even more strongly in X0 flies. In contrast, the additional Y chromosome in XYY males and XXY females diminishes the heterochromatic signal in these normally silenced, repeat-rich regions, which is accompanied by an increase in expression of Y-linked repeats. We find hundreds of genes that are expressed differentially between individuals with aberrant sex chromosome karyotypes, many of which also show sex-biased expression in wildtype Drosophila. Thus, Y chromosomes influence heterochromatin integrity genome-wide, and differences in the chromatin landscape of males and females may also contribute to sex-biased gene expression and sexual dimorphisms.

A Behavior-Manipulating Virus Relative as a Source of Adaptive Genes for Drosophila Parasitoids

Thu, 20 Feb 2020 00:00:00 GMT

Some species of parasitic wasps have domesticated viral machineries to deliver immunosuppressive factors to their hosts. Up to now, all described cases fall into the Ichneumonoidea superfamily, which only represents around 10% of hymenoptera diversity, raising the question of whether such domestication occurred outside this clade. Furthermore, the biology of the ancestral donor viruses is completely unknown. Since the 1980s, we know that Drosophila parasitoids belonging to the Leptopilina genus, which diverged from the Ichneumonoidea superfamily 225 Ma, do produce immunosuppressive virus-like structure in their reproductive apparatus. However, the viral origin of these structures has been the subject of debate. In this article, we provide genomic and experimental evidence that those structures do derive from an ancestral virus endogenization event. Interestingly, its close relatives induce a behavior manipulation in present-day wasps. Thus, we conclude that virus domestication is more prevalent than previously thought and that behavior manipulation may have been instrumental in the birth of such associations.

GBE | Most Read

Genome Biology & Evolution

Highlight: Adaptations That Rule the Night

Fri, 16 Oct 2020 00:00:00 GMT

As the only birds with a nocturnal, predatory lifestyle, owls occupy a unique niche in the avian realm. Hunting prey in the dark comes with a number of challenges. Owls have evolved several features that leave them well suited to this task, combining raptorial traits like acute vision and sharp talons with nocturnal adaptations such as enhanced hearing and night vision. In a recent article in Genome Biology and Evolution titled “Genomic evidence for sensorial adaptations to a nocturnal predatory lifestyle in owls,” Pamela Espíndola-Hernández, a doctoral student at the Max Planck Institute for Ornithology, and colleagues report the results of a genome-wide scan to uncover the genetic and selective mechanisms that underlie the owls’ particular adaptations (Espíndola-Hernández et al. 2020). In addition to confirming the important role of the visual and auditory systems, the study, which was overseen by Dr Bart Kempenaers and Dr Jakob Mueller, in collaboration with Dr Martina Carrete at the Universidad Pablo de Olavide in Spain, suggests the existence of an unusual adaptation not yet described in birds, shedding new light on the evolutionary history of this nighttime predator. Specifically, the authors propose that selection has acted on epigenetic mechanisms to package the DNA in retinal cells in such a way that it acts as a light-channeling lens to enhance photoreception.

Genomic Evidence for Sensorial Adaptations to a Nocturnal Predatory Lifestyle in Owls

Sat, 08 Aug 2020 00:00:00 GMT

Owls (Strigiformes) evolved specific adaptations to their nocturnal predatory lifestyle, such as asymmetrical ears, a facial disk, and a feather structure allowing silent flight. Owls also share some traits with diurnal raptors and other nocturnal birds, such as cryptic plumage patterns, reversed sexual size dimorphism, and acute vision and hearing. The genetic basis of some of these adaptations to a nocturnal predatory lifestyle has been studied by candidate gene approaches but rarely with genome-wide scans. Here, we used a genome-wide comparative analysis to test for selection in the early history of the owls. We estimated the substitution rates in the coding regions of 20 bird genomes, including 11 owls of which five were newly sequenced. Then, we tested for functional overrepresentation across the genes that showed signals of selection. In the ancestral branch of the owls, we found traces of positive selection in the evolution of genes functionally related to visual perception, especially to phototransduction, and to chromosome packaging. Several genes that have been previously linked to acoustic perception, circadian rhythm, and feather structure also showed signals of an accelerated evolution in the origin of the owls. We discuss the functions of the genes under positive selection and their putative association with the adaptation to the nocturnal predatory lifestyle of the owls.

First Complete Genome Sequences of Janthinobacterium lividum EIF1 and EIF2 and Their Comparative Genome Analysis

Mon, 13 Jul 2020 00:00:00 GMT

We present the first two complete genomes of the Janthinobacterium lividum species, namely strains EIF1 and EIF2, which both possess the ability to synthesize violacein. The violet pigment violacein is a secondary metabolite with antibacterial, antifungal, antiviral, and antitumoral properties. Both strains were isolated from environmental oligotrophic water ponds in Göttingen. The strains were phylogenetically classified by average nucleotide identity (ANI) analysis and showed a species assignment to J. lividum with 97.72% (EIF1) and 97.66% (EIF2) identity. These are the first complete genome sequences of strains belonging to the species J. lividum. The genome of strain EIF1 consists of one circular chromosome (6,373,589 bp) with a GC-content of 61.98%. The genome contains 5,551 coding sequences, 122 rRNAs, 93 tRNAs, and 1 tm-RNA. The genome of EIF2 comprises one circular chromosome (6,399,352 bp) with a GC-content of 61.63% and a circular plasmid p356839 (356,839 bp) with a GC-content of 57.21%. The chromosome encodes 5,691 coding sequences, 122 rRNAs, 93 tRNAs, and 1 tm-RNA and the plasmid harbors 245 coding sequences. In addition to the highly conserved chromosomally encoded violacein operon, the plasmid comprises a nonribosomal peptide synthetase cluster with similarity to xenoamicin, which is a bioactive compound effective against protozoan parasites.

Two Lineages of Pseudomonas aeruginosa Filamentous Phages: Structural Uniformity over Integration Preferences

Mon, 13 Jul 2020 00:00:00 GMT

Pseudomonas aeruginosa filamentous (Pf) bacteriophages are important factors contributing to the pathogenicity of this opportunistic bacterium, including biofilm formation and suppression of bacterial phagocytosis by macrophages. In addition, the capacity of Pf phages to form liquid crystal structures and their high negative charge density makes them potent sequesters of cationic antibacterial agents, such as aminoglycoside antibiotics or host antimicrobial peptides. Therefore, Pf phages have been proposed as a potential biomarker for risk of antibiotic resistance development. The majority of studies describing biological functions of Pf viruses have been performed with only three of them: Pf1, Pf4, and Pf5. However, our analysis revealed that Pf phages exist as two evolutionary lineages (I and II), characterized by substantially different structural/morphogenesis properties, despite sharing the same integration sites in the host chromosomes. All aforementioned model Pf phages are members of the lineage I. Hence, it is reasonable to speculate that their interactions with P. aeruginosa and impact on its pathogenicity may be not completely extrapolated to the lineage II members. Furthermore, in order to organize the present numerical nomenclature of Pf phages, we propose a more informative approach based on the insertion sites, that is, Pf-tRNA-Gly, -Met, -Sec, -tmRNA, and -DR (direct repeats), which are fully compatible with one of five types of tyrosine integrases/recombinases XerC/D carried by these viruses. Finally, we discuss possible evolutionary mechanisms behind this division and consequences from the perspective of virus–virus, virus–bacterium, and virus–human interactions.

The Genome of the Softshell Clam Mya arenaria and the Evolution of Apoptosis

Sat, 11 Jul 2020 00:00:00 GMT

Apoptosis is a fundamental feature of multicellular animals and is best understood in mammals, flies, and nematodes, with the invertebrate models being thought to represent a condition of ancestral simplicity. However, the existence of a leukemia-like cancer in the softshell clam Mya arenaria provides an opportunity to re-evaluate the evolution of the genetic machinery of apoptosis. Here, we report the whole-genome sequence for M. arenaria which we leverage with existing data to test evolutionary hypotheses on the origins of apoptosis in animals. We show that the ancestral bilaterian p53 locus, a master regulator of apoptosis, possessed a complex domain structure, in contrast to that of extant ecdysozoan p53s. Further, ecdysozoan taxa, but not chordates or lophotrochozoans like M. arenaria, show a widespread reduction in apoptosis gene copy number. Finally, phylogenetic exploration of apoptosis gene copy number reveals a striking linkage with p53 domain complexity across species. Our results challenge the current understanding of the evolution of apoptosis and highlight the ancestral complexity of the bilaterian apoptotic tool kit and its subsequent dismantlement during the ecdysozoan radiation.

Ultrastructural, Cytochemical, and Comparative Genomic Evidence of Peroxisomes in Three Genera of Pathogenic Free-Living Amoebae, Including the First Morphological Data for the Presence of This Organelle in Heteroloboseans

Tue, 30 Jun 2020 00:00:00 GMT

Peroxisomes perform various metabolic processes that are primarily related to the elimination of reactive oxygen species and oxidative lipid metabolism. These organelles are present in all major eukaryotic lineages, nevertheless, information regarding the presence of peroxisomes in opportunistic parasitic protozoa is scarce and in many cases it is still unknown whether these organisms have peroxisomes at all. Here, we performed ultrastructural, cytochemical, and bioinformatic studies to investigate the presence of peroxisomes in three genera of free-living amoebae from two different taxonomic groups that are known to cause fatal infections in humans. By transmission electron microscopy, round structures with a granular content limited by a single membrane were observed in Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba polyphaga, Acanthamoeba royreba, Balamuthia mandrillaris (Amoebozoa), and Naegleria fowleri (Heterolobosea). Further confirmation for the presence of peroxisomes was obtained by treating trophozoites in situ with diaminobenzidine and hydrogen peroxide, which showed positive reaction products for the presence of catalase. We then performed comparative genomic analyses to identify predicted peroxin homologues in these organisms. Our results demonstrate that a complete set of peroxins—which are essential for peroxisome biogenesis, proliferation, and protein import—are present in all of these amoebae. Likewise, our in silico analyses allowed us to identify a complete set of peroxins in Naegleria lovaniensis and three novel peroxin homologues in Naegleria gruberi. Thus, our results indicate that peroxisomes are present in these three genera of free-living amoebae and that they have a similar peroxin complement despite belonging to different evolutionary lineages.

Evolutionary History of the Globin Gene Family in Annelids

Mon, 29 Jun 2020 00:00:00 GMT

Animals depend on the sequential oxidation of organic molecules to survive; thus, oxygen-carrying/transporting proteins play a fundamental role in aerobic metabolism. Globins are the most common and widespread group of respiratory proteins. They can be divided into three types: circulating intracellular, noncirculating intracellular, and extracellular, all of which have been reported in annelids. The diversity of oxygen transport proteins has been underestimated across metazoans. We probed 250 annelid transcriptomes in search of globin diversity in order to elucidate the evolutionary history of this gene family within this phylum. We report two new globin types in annelids, namely androglobins and cytoglobins. Although cytoglobins and myoglobins from vertebrates and from invertebrates are referred to by the same name, our data show they are not genuine orthologs. Our phylogenetic analyses show that extracellular globins from annelids are more closely related to extracellular globins from other metazoans than to the intracellular globins of annelids. Broadly, our findings indicate that multiple gene duplication and neo-functionalization events shaped the evolutionary history of the globin family.