Registration and Membership

Non-Members: You must Register for an account to purchase a membership and conduct other transactions. Future visits to the website will only require login.

After login or registration: You may conduct online transactions such as joining or renewing a membership, registering for an annual meeting and making donations.

About

The Society for Molecular Biology and Evolution is an international organization whose goals are to provide facilities for association and communication among molecular evolutionists and to further the goals of molecular evolution, as well as its practitioners and teachers. In order to accomplish these goals, the Society publishes two peer-reviewed journals, Molecular Biology and Evolution and Genome Biology and Evolution. The Society sponsors an annual meeting, as well as smaller satellite meetings or workshop on important, focused, and timely topics. It also confers honors and awards to students and researchers.

Login

Username:
Password:
Forgot username/password?

Featured News

Upcoming SMBE Annual Conferences

We are delighted to announce our upcoming annual conferences.

• In 2022, we’ll go live again to Auckland, New Zealand. Please note that a decision will be made at the end of this year if this is possible or if we need to make this an online meeting again due to renewed lockdowns

Our 2023 meeting will be in Ferrara, Italy, again likely with an online component.

Our 2024 meeting will be in Puerto Vallarta, Mexico (more information coming soon).

Exact dates to come, please expect all dates to be similar to the usual late June/ early July.


Continue Reading →


  • Thursday, September 30, 2021
  • Comments (0)

Select SMBEv2021 videos are now on the SMBE YouTube Channel!

SMBE is pleased to announce that videos from the 2021 Graduate Student Symposium, SMBE Presidential Addresses, SMBE Business Meeting and the 2021 SMBE Faculty Awards Symposium have been posted to the SMBE YouTube Channel. A “mini program” may be found HERE with links to view the presentations.

Continue Reading →


  • Tuesday, September 28, 2021
  • Comments (0)

SMBE IDEA Task Force: Call for Nominations and Self-Nominations extended until August 31, 2021

INSTRUCTIONS FOR NOMINATIONS:

Inclusion, Diversity Equity and Access (IDEA) Task Force

Charge: The IDEA Task Force was created to address the challenges faced by under-represented groups in SMBE, in particular, as well as science in general, including providing concrete recommendations for broadening representation and inclusion in all aspects of the society. This group will survey membership about priorities, solicit and be receptive to ideas and suggestions, investigate and discuss possibilities and logistics, and present recommendations to Council on a quarterly basis. Members of Council may also reach out to the IDEA Task Force with questions and suggestions for them to consider. By definition, then, the specific charges of this task force will evolve. Immediate tasks will be to identify priorities for initiatives and programming, recommend recipients of the IDEA awards (formerly Equal Opportunity Awards), and review the criteria and names of our existing awards to better reflect the values of our society.

Structure: The IDEA task force will be advisory to the SMBE Council, and will have 10 members. Two of these members shall be SMBE Councillors. The remaining 8 members-at-large will be selected from SMBE membership external to the Council. To encourage broad participation, former members of Council may not join the task force until a year has passed since their service on Council. There shall be two co-chairs, neither of whom may be Council members. We shall strive to maximize diversity on all axes among the membership.

Process: Members of the Task Force will be solicited from nominees (self-nominations are encouraged) from the SMBE membership. To be considered, nominees must submit a statement of interest that includes a brief description (no more than one page) of why that individual is interested in participating by email to secretary.smbe@gmail.com. Council will select the members of the task force from among the nominees, considering both their statements and representation. Membership will rotate, such that volunteers will serve for staggered terms of three years.

We call for nominations (including self-nominations) by 31 August 2021. Nominees will be contacted immediately thereafter and asked to provide statements by 15 September 2021. Initial appointment terms will include two 1-year positions, three 2-year positions, and three 3-year positions; if you have a preference for a shorter term, please indicate this when you submit your statement; otherwise terms will be decided arbitrarily by Council.

Continue Reading →


  • Thursday, August 19, 2021
  • Comments (0)

Congratulations to the winners of the SMBE 2021 annual Faculty Awards

2021 SMBE Early-Career Excellence Award Winner: Kelley Harris

Kelley Harris is an Assistant Professor in the Department of Genome Sciences at the University of Washington School of Medicine, as well as an Affiliate Assistant Member of the Herbold Computational Biology Program at the Fred Hutchinson Cancer Research Center. Her group is trying to understand how mutational processes are shaped by genetic drift and natural selection and how this evolutionary process in turn modulates the accumulation of genetic variation. After earning a B.A. in Mathematics from Harvard and an M.Phil. in Biological Sciences from Cambridge, advised by Richard Durbin, she completed her Ph.D. at UC Berkeley working with Rasmus Nielsen and Yun Song. Her postdoctoral work at Stanford in the lab of Jonathan Pritchard was supported by an NIH NRSA postdoctoral fellowship. The Harris Lab is currently supported by an NIH NIGMS R35 grant as well as grants from the Burroughs Wellcome Fund, the Sloan Foundation, the Kinship Foundation, and the Pew Charitable Trusts.
 

2021 SMBE Mid-Career Excellence Award Winner: Tanja Stadler

Tanja Stadler is an Associate Professor at the Department of Biosystems Science and Engineering of the Swiss Federal Institute of Technology (ETH Zürich) in Basel. Further, Tanja is president of the Swiss National COVID-​19 Science Task Force. Tanja studied Applied Mathematics at the Technical University of Munich (Germany), the University of Cardiff (UK), and the University of Canterbury (New Zealand). She obtained a Master degree in 2006 and a PhD in 2008 from the Technical University of Munich (with Prof. Anusch Taraz and Prof. Mike Steel). Tanja then joined ETH Zürich as a postdoctoral researcher with Prof. Sebastian Bonhoeffer in the Department of Environmental Systems Sciences, and was promoted to Group Leader in 2011. In 2014, she moved to the Department of Biosystems Science and Engineering as an Assistant Professor where she obtained tenure in 2017. Her work is at the interface of mathematics, computer science, evolution, ecology and infectious diseases. In particular, she develops phylogenetic tools to address epidemiological and medical questions, as well as questions in the fields of ecology, species evolution, cell differentiation and language evolution. Her honors include the TUM PhD award 2008, the John Maynard Smith prize 2012, the ETH Latsis prize 2013, the Zonta prize 2013, and the ETH Golden Owl for teaching in 2016. In 2013, Tanja received an ERC starting grant. In 2020, Tanja received an ERC consolidator grant.

2021 SMBE Lifetime Research Achievements Award Winner: Michael Lynch

Michael Lynch is currently the Director of the Biodesign Center for Mechanisms of Evolution, Arizona State University, where he also heads an NSF-funded center grant focused on the cellular mechanisms of evolution. His research has long focused on the genetic mechanisms of evolution, particularly at the genomic and cellular levels, and on population-genomic analysis. His lab works with a number of model systems, most notably the microcrustacean Daphnia, the ciliate Paramecium, and numerous other unicellular prokaryotic and eukaryotic species. Current re

Continue Reading →


  • Monday, August 16, 2021
  • Comments (0)

In Memoriam - SMBE mourns the passing of Dr. Richard Charles "Dick" Lewontin

Dear SMBE Members,

On the morning of July 4, 2021, population geneticist Richard “Dick” Lewontin passed away at the age of 92, just three days after his high-school sweetheart and wife of 73 years, Mary Jane. Both had been in poor health. Lewontin was an emeritus Professor in the Department of Organismic & Evolutionary Biology and Curator in the Museum of Comparative Zoology at Harvard University.

Lewontin has left an indelible imprint on the field of evolutionary biology through his research, writing, and mentorship.

After finishing his undergraduate degree at Harvard, Lewontin trained under the supervision of the famous Drosophila geneticist Theodosius Dobzhansky at Columbia. Dobzhansky was often away collecting flies, which provided Lewontin freedom and independence. But, when Dobzhansky was back in the lab, they purportedly argued intensely about population genetics, an activity both parties enjoyed immensely.

Fresh after earning his PhD from Columbia, he moved to North Carolina State University, where he remained for just 4 years (1954-1958) before moving, first to the University of Rochester, and then to the University of Chicago. In his early work, Lewontin was known for bringing a mathematical modeling approach to the field of genetics. While most population genetics was focused on a single gene, his early work with Ken-Ichi Kojima essentially founded two-locus theory and introduced the term “linkage disequilibrium” to describe the statistical association between the variation at each of a pair of genes. This work laid the foundation for now commonly used, association-mapping approaches.

However, the primary reason Lewontin moved to Chicago was because he recognized the exciting work of biochemist Jack Hubby, a new faculty member, who was pioneering the method of gel electrophoresis. As Lewontin put it: Hubby had a method but no question, and he had a question but no method. Together, they published two ground-breaking papers in Genetics: Hubby & Lewontin (1966) and Lewontin & Hubby (1966). The first focused on the method by which one could assay genetic variation via gel electrophoresis, and the second applied this method to assess genetic variation in a population of Drosophila pseudoobscura. Lewontin complained – even decades later – how the latter paper was more highly cited, and Hubby wasn’t adequately recognized for his contributions. Nonetheless, together, these papers laid the foundation for the field of molecular evolution, by (1) demonstrating the surprisingly high amount of genetic variation (heterozygosity) in natural populations and (2) setting the stage for the still ongoing debate about how much of this variation was due to natural selection and how much was due to chance. See Charlesworth et al. (2016) for more detail. As a direct consequence of these studies, Motoo Kimura and his colleagues developed the neutral theory, which tries to explain in quantitative terms the observed pattern of genetic variation expected in the absence of any form of natural selection. Thus, effectively, these papers set the agenda, for both empirical and theoretical population genetics, for the ensuing decades and to the current era of population genomics.

In 1973, Lewontin was lured to Harvard University and the Museum of Comparative Zoology (MCZ) to serve as a “Curator of Population Genetics”, a new position designed for him. He was offered the entire third floor of the MCZ, which he had renovated to his specifications. Most notably, in the center was an expa

Continue Reading →


  • Friday, July 09, 2021
  • Comments (0)

Election results President-Elect and two Councillors 2022

As announced earlier on social media, our election for President-elect and two Councillors whose terms will begin on 1 January 2022 resulted in the following appointments:

SMBE President-elect: Dr. Kateryna Makova

A native of Ukraine, Kateryna Makova received her PhD from Texas Tech University, where she studied the genetic consequences of the Chernobyl Nuclear Power Plant accident. She then completed her postdoctoral studies at the University of Chicago, where she investigated differences in mutation rates between males and females, among other topics. She has been a Professor in the Department of Biology at the Pennsylvania State University since 2003. Her laboratory conducts research in evolutionary and medical genomics. Current topics of interest include sex chromosome evolution, evolution of non-B DNA, mitochondrial DNA evolution, regional variation in mutation rates, and childhood obesity. The research in Kateryna’s laboratory is highly interdisciplinary and collaborative. The group collaborates with statisticians, computer scientists, and biochemists.

During her career Kateryna has mentored 15 PhD students and 11 postdoctoral fellows, and co-authored over 100 scientific manuscripts. She currently directs the Center for Medical Genomics, which brings together basic science and medical researchers at Penn State University. She is an Editor of Genome Research and is a member of the Board of Scientific Counsellors to the National Library of Medicine (the National Institutes of Health).

Kateryna still remembers attending her first SMBE meeting in 1998 in Vancouver. She has been an active member of the society since then. Kateryna was a member of the Organizing Committee of the SMBE annual meeting hosted in 2004 at Penn State. In subsequent years, she was a member of the Nominating Committee, Fitch Prize Awards Committee, and Travel Awards Committee, as well as organized multiple symposia at the SMBE annual meetings. Kateryna was a Councillor of SMBE in 2015-2017. Her main contributions while serving at the Council include establishing the uniform annual meeting format and handling the satellite meetings program. She has been a strong supporter (and an occasional user) of the childcare program and advocated for increasing the number and amount of meeting travel awards. Kateryna was a member of the Editorial Board of Genome Biology and Evolution from the foundation of the journal in 2009 and until 2020.

As the next SMBE President, Kateryna proposes to work on:

  • Developing a hybrid meeting format for future SMBE conferences, which should include in-person and on-line events. What can we learn from the pandemic? How can we build an annual conference that enables both on-line attendance to anyone in the world and live interactions to those who can travel.
  • Augmenting annual SMBE conferences with public lectures given by our leading researchers. Communicating our scientific discoveries to the public, including school students and teachers, is of paramount importance in the time when science is not trusted in many countries.
  • Establishing novel mentorship opportunities at all career levels (from undergraduate students to assistant professors) within the society both during and outside of the annual meeting. Females and people from minority groups should have a priority in such mentorship opportunities.
  • Expanding regional meeting programs to include more developing countries. Not everyone can afford to attend an annual meeting on another co

    Continue Reading →


  • Thursday, July 08, 2021
  • Comments (0)

 


SMBE is a member of the Scientific Society Publisher Alliance

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

Correction to: Population Genetic Considerations Regarding Evidence for Biased Mutation Rates in Arabidopsis thaliana

Fri, 24 Mar 2023 00:00:00 GMT

This is a correction to: Brian Charlesworth, Jeffrey D Jensen, Population Genetic Considerations Regarding Evidence for Biased Mutation Rates in Arabidopsis thaliana, Molecular Biology and Evolution, Volume 40, Issue 2, February 2023, msac275, https://doi.org/10.1093/molbev/msac275

New Insights into the Evolution and Gene Structure of the Mitochondrial Carrier Family Unveiled by Analyzing the Frequent and Conserved Intron Positions

Tue, 14 Mar 2023 00:00:00 GMT

Abstract
Mitochondrial carriers (MCs) belong to a eukaryotic protein family of transporters that in higher organisms is called the solute carrier family 25 (SLC25). All MCs have characteristic triplicated sequence repeats forming a 3-fold symmetrical structure of a six-transmembrane α-helix bundle with a centrally located substrate-binding site. Biochemical characterization has shown that MCs altogether transport a wide variety of substrates but can be divided into subfamilies, each transporting a few specific substrates. We have investigated the intron positions in the human MC genes and their orthologs of highly diversified organisms. The results demonstrate that several intron positions are present in numerous MC sequences at the same specific points, of which some are 3-fold symmetry related. Many of these frequent intron positions are also conserved in subfamilies or in groups of subfamilies transporting similar substrates. The analyses of the frequent and conserved intron positions in MCs suggest phylogenetic relationships not only between close but also distant homologs as well as a possible involvement of the intron positions in the evolution of the substrate specificity diversification of the MC family members.

Massive Somatic and Germline Chromosomal Integrations of Polydnaviruses in Lepidopterans

Tue, 07 Mar 2023 00:00:00 GMT

Abstract
Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.

GBE | Most Read

Genome Biology & Evolution

Inside the Shark Nursery: The Evolution of Live Birth in Cartilaginous Fish

Wed, 15 Mar 2023 00:00:00 GMT

A new study in Genome Biology and Evolution reveals that egg yolk proteins may have been co-opted to provide maternal nutrition in live-bearing sharks and their relatives.

Chromosome-scale Genome Assembly of the Yellow Nutsedge (Cyperus esculentus)

Tue, 21 Feb 2023 00:00:00 GMT

Abstract
The yellow nutsedge (Cyperus esculentus L. 1753) is an unconventional oil plant with oil-rich tubers, and a potential alternative for traditional oil crops. Here, we reported the first high-quality and chromosome-level genome assembly of the yellow nutsedge generated by combining PacBio HiFi long reads, Novaseq short reads, and Hi-C data. The final genome size is 225.6 Mb with an N50 of 4.3 Mb. More than 222.9 Mb scaffolds were anchored to 54 pseudochromosomes with a BUSCO score of 96.0%. We identified 76.5 Mb (33.9%) repetitive sequences across the genome. A total of 23,613 protein-coding genes were predicted in this genome, of which 22,847 (96.8%) were functionally annotated. A whole-genome duplication event was found after the divergence of Carex littledalei and Rhynchospora breviuscula, indicating the rich genetic resources of this species for adaptive evolution. Several significantly enriched GO terms were related to invasiveness of the yellow nutsedge, which may explain its plastic adaptability. In addition, several enriched Kyoto Encyclopedia of Genes and Genomes pathways and expanded gene families were closely related with substances in tubers, partially explaining the genomic basis of characteristics of this oil-rich tuber.

Evolutionary History of the Poecilia picta Sex Chromosomes

Tue, 21 Feb 2023 00:00:00 GMT

Abstract
The degree of divergence between the sex chromosomes is not always proportional to their age. In poeciliids, four closely related species all exhibit a male heterogametic sex chromosome system on the same linkage group, yet show a remarkable diversity in X and Y divergence. In Poecilia reticulata and P. wingei, the sex chromosomes remain homomorphic, yet P. picta and P. parae have a highly degraded Y chromosome. To test alternative theories about the origin of their sex chromosomes, we used a combination of pedigrees and RNA-seq data from P. picta families in conjunction with DNA-seq data collected from P. reticulata, P. wingei, P. parae, and P. picta. Phylogenetic clustering analysis of X and Y orthologs, identified through segregation patterns, and their orthologous sequences in closely related species demonstrates a similar time of origin for both the P. picta and P. reticulata sex chromosomes. We next used k-mer analysis to identify shared ancestral Y sequence across all four species, suggesting a single origin to the sex chromosome system in this group. Together, our results provide key insights into the origin and evolution of the poeciliid Y chromosome and illustrate that the rate of sex chromosome divergence is often highly heterogenous, even over relatively short evolutionary time frames.

Egg Yolk Protein Homologs Identified in Live-Bearing Sharks: Co-Opted in the Lecithotrophy-to-Matrotrophy Shift?

Mon, 20 Feb 2023 00:00:00 GMT

Abstract
Reproductive modes of vertebrates are classified into two major embryonic nutritional types: yolk deposits (i.e., lecithotrophy) and maternal investment (i.e., matrotrophy). Vitellogenin (VTG), a major egg yolk protein synthesized in the female liver, is one of the molecules relevant to the lecithotrophy-to-matrotrophy shift in bony vertebrates. In mammals, all VTG genes are lost following the lecithotrophy-to-matrotrophy shift, and it remains to be elucidated whether the lecithotrophy-to-matrotrophy shift in nonmammalians is also associated with VTG repertoire modification. In this study, we focused on chondrichthyans (cartilaginous fishes)—a vertebrate clade that underwent multiple lecithotrophy-to-matrotrophy shifts. For an exhaustive search of homologs, we performed tissue-by-tissue transcriptome sequencing for two viviparous chondrichthyans, the frilled shark Chlamydoselachus anguineus and the spotless smooth-hound Mustelus griseus, and inferred the molecular phylogeny of VTG and its receptor very low-density lipoprotein receptor (VLDLR), across diverse vertebrates. As a result, we identified either three or four VTG orthologs in chondrichthyans including viviparous species. We also showed that chondrichthyans had two additional VLDLR orthologs previously unrecognized in their unique lineage (designated as VLDLRc2 and VLDLRc3). Notably, VTG gene expression patterns differed in the species studied depending on their reproductive mode; VTGs are broadly expressed in multiple tissues, including the uterus, in the two viviparous sharks, and in addition to the liver. This finding suggests that the chondrichthyans VTGs do not only function as the yolk nutrient but also as the matrotrophic factor. Altogether, our study indicates that the lecithotrophy-to-matrotrophy shift in chondrichthyans was achieved through a distinct evolutionary process from mammals.

A Chromosome-length Assembly of the Black Petaltail (Tanypteryx hageni) Dragonfly

Sat, 18 Feb 2023 00:00:00 GMT

Abstract
We present a chromosome-length genome assembly and annotation of the Black Petaltail dragonfly (Tanypteryx hageni). This habitat specialist diverged from its sister species over 70 million years ago, and separated from the most closely related Odonata with a reference genome 150 million years ago. Using PacBio HiFi reads and Hi-C data for scaffolding we produce one of the most high-quality Odonata genomes to date. A scaffold N50 of 206.6 Mb and a single copy BUSCO score of 96.2% indicate high contiguity and completeness.

Population Structure, Demographic History, and Adaptation of Giant Honeybees in China Revealed by Population Genomic Data

Fri, 17 Feb 2023 00:00:00 GMT

Abstract
There have been many population-based genomic studies on human-managed honeybees (Apis mellifera and Apis cerana), but there has been a notable lack of analysis with regard to wild honeybees, particularly in relation to their evolutionary history. Nevertheless, giant honeybees have been found to occupy distinct habitats and display remarkable characteristics, which are attracting an increased amount of attention. In this study, we de novo sequenced and then assembled the draft genome sequence of the Himalayan giant honeybee, Apis laboriosa. Phylogenetic analysis based on genomic information indicated that A. laboriosa and its tropical sister species Apis dorsata diverged ∼2.61 Ma, which supports the speciation hypothesis that links A. laboriosa to geological changes throughout history. Furthermore, we re-sequenced A. laboriosa and A. dorsata samples from five and six regions, respectively, across their population ranges in China. These analyses highlighted major genetic differences for Tibetan A. laboriosa as well as the Hainan Island A. dorsata. The demographic history of most giant honeybee populations has mirrored glacial cycles. More importantly, contrary to what has occurred among human-managed honeybees, the demographic history of these two wild honeybee species indicates a rapid decline in effective population size in the recent past, reflecting their differences in evolutionary histories. Several genes were found to be subject to selection, which may help giant honeybees to adapt to specific local conditions. In summary, our study sheds light on the evolutionary and adaptational characteristics of two wild giant honeybee species, which was useful for giant honeybee conservation.

OrthoPhy: A Program to Construct Ortholog Data Sets Using Taxonomic Information

Fri, 17 Feb 2023 00:00:00 GMT

Abstract
Species phylogenetic trees represent the evolutionary processes of organisms, and they are fundamental in evolutionary research. Therefore, new methods have been developed to obtain more reliable species phylogenetic trees. A highly reliable method is the construction of an ortholog data set based on sequence information of genes, which is then used to infer the species phylogenetic tree. However, although methods for constructing an ortholog data set for species phylogenetic analysis have been developed, they cannot remove some paralogs, which is necessary for reliable species phylogenetic inference. To address the limitations of current methods, we developed OrthoPhy, a program that excludes paralogs and constructs highly accurate ortholog data sets using taxonomic information dividing analyzed species into monophyletic groups. OrthoPhy can remove paralogs, detecting inconsistencies between taxonomic information and phylogenetic trees of candidate ortholog groups clustered by sequence similarity. Performance tests using evolutionary simulated sequences and real sequences of 40 bacteria revealed that the precision of ortholog inference by OrthoPhy is higher than that of existing programs. Additionally, the phylogenetic analysis of species was more accurate when performed using ortholog data sets constructed by OrthoPhy than that performed using data sets constructed by existing programs. Furthermore, we performed a benchmark test of the Quest for Orthologs using real sequence data and found that the concordance rate between the phylogenetic trees of orthologs inferred by OrthoPhy and those of species was higher than the rates obtained by other ortholog inference programs. Therefore, ortholog data sets constructed using OrthoPhy enabled a more accurate phylogenetic analysis of species than those constructed using the existing programs, and OrthoPhy can be used for the phylogenetic analysis of species even for distantly related species that have experienced many evolutionary events.

polishCLR: A Nextflow Workflow for Polishing PacBio CLR Genome Assemblies

Thu, 16 Feb 2023 00:00:00 GMT

Abstract
Long-read sequencing has revolutionized genome assembly, yielding highly contiguous, chromosome-level contigs. However, assemblies from some third generation long read technologies, such as Pacific Biosciences (PacBio) continuous long reads (CLR), have a high error rate. Such errors can be corrected with short reads through a process called polishing. Although best practices for polishing non-model de novo genome assemblies were recently described by the Vertebrate Genome Project (VGP) Assembly community, there is a need for a publicly available, reproducible workflow that can be easily implemented and run on a conventional high performance computing environment. Here, we describe polishCLR (https://github.com/isugifNF/polishCLR), a reproducible Nextflow workflow that implements best practices for polishing assemblies made from CLR data. PolishCLR can be initiated from several input options that extend best practices to suboptimal cases. It also provides re-entry points throughout several key processes, including identifying duplicate haplotypes in purge_dups, allowing a break for scaffolding if data are available, and throughout multiple rounds of polishing and evaluation with Arrow and FreeBayes. PolishCLR is containerized and publicly available for the greater assembly community as a tool to complete assemblies from existing, error-prone long-read data.

Taxonomically Restricted Genes in Bacillus may Form Clusters of Homologs and Can be Traced to a Large Reservoir of Noncoding Sequences

Wed, 15 Feb 2023 00:00:00 GMT

Abstract
Taxonomically restricted genes (TRGs) are unique for a defined group of organisms and may act as potential genetic determinants of lineage-specific, biological properties. Here, we explore the TRGs of highly diverse and economically important Bacillus bacteria by examining commonly used TRG identification parameters and data sources. We show the significant effects of sequence similarity thresholds, composition, and the size of the reference database in the identification process. Subsequently, we applied stringent TRG search parameters and expanded the identification procedure by incorporating an analysis of noncoding and non-syntenic regions of non-Bacillus genomes. A multiplex annotation procedure minimized the number of false-positive TRG predictions and showed nearly one-third of the alleged TRGs could be mapped to genes missed in genome annotations. We traced the putative origin of TRGs by identifying homologous, noncoding genomic regions in non-Bacillus species and detected sequence changes that could transform these regions into protein-coding genes. In addition, our analysis indicated that Bacillus TRGs represent a specific group of genes mostly showing intermediate sequence properties between genes that are conserved across multiple taxa and nonannotated peptides encoded by open reading frames.

The Impact of Sample Size and Population History on Observed Mutational Spectra: A Case Study in Human and Chimpanzee Populations

Wed, 15 Feb 2023 00:00:00 GMT

Abstract
Recent studies have highlighted variation in the mutational spectra among human populations as well as closely related hominoids—yet little remains known about the genetic and nongenetic factors driving these rate changes across the genome. Pinpointing the root causes of these differences is an important endeavor that requires careful comparative analyses of population-specific mutational landscapes at both broad and fine genomic scales. However, several factors can confound such analyses. Although previous studies have shown that technical artifacts, such as sequencing errors and batch effects, can contribute to observed mutational shifts, other potentially confounding parameters have received less attention thus far. Using population genetic simulations of human and chimpanzee populations as an illustrative example, we here show that the sample size required for robust inference of mutational spectra depends on the population-specific demographic history. As a consequence, the power to detect rate changes is high in certain hominoid populations while, for others, currently available sample sizes preclude analyses at fine genomic scales.

Increased Sampling and Intracomplex Homologies Favor Vertical Over Horizontal Inheritance of the Dam1 Complex

Wed, 15 Feb 2023 00:00:00 GMT

Abstract
Kinetochores connect chromosomes to spindle microtubules to ensure their correct segregation during cell division. Kinetochores of human and yeasts are largely homologous, their ability to track depolymerizing microtubules, however, is carried out by the nonhomologous complexes Ska1-C and Dam1-C, respectively. We previously reported the unique anti-correlating phylogenetic profiles of Dam1-C and Ska-C found among a wide variety of eukaryotes. Based on these profiles and the limited presence of Dam1-C, we speculated that horizontal gene transfer could have played a role in the evolutionary history of Dam1-C. Here, we present an expanded analysis of Dam1-C evolution, using additional genome as well as transcriptome sequences and recently published 3D structures. This analysis revealed a wider and more complete presence of Dam1-C in Cryptista, Rhizaria, Ichthyosporea, CRuMs, and Colponemidia. The fungal Dam1-C cryo-EM structure supports earlier hypothesized intracomplex homologies, which enables the reconstruction of rooted and unrooted phylogenies. The rooted tree of concatenated Dam1-C subunits is statistically consistent with the species tree of eukaryotes, suggesting that Dam1-C is ancient, and that the present-day phylogenetic distribution is best explained by multiple, independent losses and no horizontal gene transfer was involved. Furthermore, we investigated the ancient origin of Dam1-C via profile-versus-profile searches. Homology among 8 out of the 10 Dam1-C subunits suggests that the complex largely evolved from a single multimerizing subunit that diversified into a hetero-octameric core via stepwise subunit duplication and subfunctionalization of the subunits before the origin of the last eukaryotic common ancestor.

Sizing Up the Onychophoran Genome: Repeats, Introns, and Gene Family Expansion Contribute to Genome Gigantism in Epiperipatus broadwayi

Wed, 15 Feb 2023 00:00:00 GMT

Abstract
Genome assemblies are growing at an exponential rate and have proved indispensable for studying evolution but the effort has been biased toward vertebrates and arthropods with a particular focus on insects. Onychophora or velvet worms are an ancient group of cryptic, soil dwelling worms noted for their unique mode of prey capture, biogeographic patterns, and diversity of reproductive strategies. They constitute a poorly understood phylum of exclusively terrestrial animals that is sister group to arthropods. Due to this phylogenetic position, they are crucial in understanding the origin of the largest phylum of animals. Despite their significance, there is a paucity of genomic resources for the phylum with only one highly fragmented and incomplete genome publicly available. Initial attempts at sequencing an onychophoran genome proved difficult due to its large genome size and high repeat content. However, leveraging recent advances in long-read sequencing technology, we present here the first annotated draft genome for the phylum. With a total size of 5.6Gb, the gigantism of the Epiperipatus broadwayi genome arises from having high repeat content, intron size inflation, and extensive gene family expansion. Additionally, we report a previously unknown diversity of onychophoran hemocyanins that suggests the diversification of copper-mediated oxygen carriers occurred independently in Onychophora after its split from Arthropoda, parallel to the independent diversification of hemocyanins in each of the main arthropod lineages.

A Mitosome With Distinct Metabolism in the Uncultured Protist Parasite Paramikrocytos canceri (Rhizaria, Ascetosporea)

Wed, 15 Feb 2023 00:00:00 GMT

Abstract
Ascetosporea are endoparasites of marine invertebrates that include economically important pathogens of aquaculture species. Owing to their often-minuscule cell sizes, strict intracellular lifestyle, lack of cultured representatives and minimal availability of molecular data, these unicellular parasites remain poorly studied. Here, we sequenced and assembled the genome and transcriptome of Paramikrocytos canceri, an endoparasite isolated from the European edible crab Cancer pagurus. Using bioinformatic predictions, we show that P. canceri likely possesses a mitochondrion-related organelle (MRO) with highly reduced metabolism, resembling the mitosomes of other parasites but with key differences. Like other mitosomes, this MRO is predicted to have reduced metabolic capacity and lack an organellar genome and function in iron–sulfur cluster (ISC) pathway-mediated Fe–S cluster biosynthesis. However, the MRO in P. canceri is uniquely predicted to produce ATP via a partial glycolytic pathway and synthesize phospholipids de novo through the CDP-DAG pathway. Heterologous gene expression confirmed that proteins from the ISC and CDP-DAG pathways retain mitochondrial targeting sequences that are recognized by yeast mitochondria. This represents a unique combination of metabolic pathways in an MRO, including the first reported case of a mitosome-like organelle able to synthesize phospholipids de novo. Some of these phospholipids, such as phosphatidylserine, are vital in other protist endoparasites that invade their host through apoptotic mimicry.

The Ancestral Mitotic State: Closed Orthomitosis With Intranuclear Spindles in the Syncytial Last Eukaryotic Common Ancestor

Wed, 08 Feb 2023 00:00:00 GMT

Abstract
All eukaryotes have linear chromosomes that are distributed to daughter nuclei during mitotic division, but the ancestral state of nuclear division in the last eukaryotic common ancestor (LECA) is so far unresolved. To address this issue, we have employed ancestral state reconstructions for mitotic states that can be found across the eukaryotic tree concerning the intactness of the nuclear envelope during mitosis (open or closed), the position of spindles (intranuclear or extranuclear), and the symmetry of spindles being either axial (orthomitosis) or bilateral (pleuromitosis). The data indicate that the LECA possessed closed orthomitosis with intranuclear spindles. Our reconstruction is compatible with recent findings indicating a syncytial state of the LECA, because it decouples three main processes: chromosome division, chromosome partitioning, and cell division (cytokinesis). The possession of closed mitosis using intranuclear spindles adds to the number of cellular traits that can now be attributed to LECA, providing insights into the lifestyle of this otherwise elusive biological entity at the origin of eukaryotic cells. Closed mitosis in a syncytial eukaryotic common ancestor would buffer mutations arising at the origin of mitotic division by allowing nuclei with viable chromosome sets to complement defective nuclei via mRNA in the cytosol.

Genome Evolution in Plants: Complex Thalloid Liverworts (Marchantiopsida)

Thu, 02 Feb 2023 00:00:00 GMT

Abstract
Why do some genomes stay small and simple, while others become huge, and why are some genomes more stable? In contrast to angiosperms and gymnosperms, liverworts are characterized by small genomes with low variation in size and conserved chromosome numbers. We quantified genome evolution among five Marchantiophyta (liverworts), measuring gene characteristics, transposable element (TE) landscape, collinearity, and sex chromosome evolution that might explain the small size and limited variability of liverwort genomes. No genome duplications were identified among examined liverworts and levels of duplicated genes are low. Among the liverwort species, Lunularia cruciata stands out with a genome size almost twice that of the other liverwort species investigated here, and most of this increased size is due to bursts of Ty3/Gypsy retrotransposons. Intrachromosomal rearrangements between examined liverworts are abundant but occur at a slower rate compared with angiosperms. Most genes on L. cruciata scaffolds have their orthologs on homologous Marchantia polymorpha chromosomes, indicating a low degree of rearrangements between chromosomes. Still, translocation of a fragment of the female U chromosome to an autosome was predicted from our data, which might explain the uniquely small U chromosome in L. cruciata. Low levels of gene duplication, TE activity, and chromosomal rearrangements might contribute to the apparent slow rate of morphological evolution in liverworts.

Genome-Scale Analysis Reveals Extensive Diversification of Voltage-Gated K+ Channels in Stem Cnidarians

Sat, 21 Jan 2023 00:00:00 GMT

Abstract
Ion channels are highly diverse in the cnidarian model organism Nematostella vectensis (Anthozoa), but little is known about the evolutionary origins of this channel diversity and its conservation across Cnidaria. Here, we examined the evolution of voltage-gated K+ channels in Cnidaria by comparing genomes and transcriptomes of diverse cnidarian species from Anthozoa and Medusozoa. We found an average of over 40 voltage-gated K+ channel genes per species, and a phylogenetic reconstruction of the Kv, KCNQ, and Ether-a-go-go (EAG) gene families identified 28 voltage-gated K+ channels present in the last common ancestor of Anthozoa and Medusozoa (23 Kv, 1 KCNQ, and 4 EAG). Thus, much of the diversification of these channels took place in the stem cnidarian lineage prior to the emergence of modern cnidarian classes. In contrast, the stem bilaterian lineage, from which humans evolved, contained no more than nine voltage-gated K+ channels. These results hint at a complexity to electrical signaling in all cnidarians that contrasts with the perceived anatomical simplicity of their neuromuscular systems. These data provide a foundation from which the function of these cnidarian channels can be investigated, which will undoubtedly provide important insights into cnidarian physiology.

A Chromosome-Scale Genome Assembly of a Helicoverpa zea Strain Resistant to Bacillus thuringiensis Cry1Ac Insecticidal Protein

Fri, 12 Aug 2022 00:00:00 GMT

Abstract
Helicoverpa zea (Lepidoptera: Noctuidae) is an insect pest of major cultivated crops in North and South America. The species has adapted to different host plants and developed resistance to several insecticidal agents, including Bacillus thuringiensis (Bt) insecticidal proteins in transgenic cotton and maize. Helicoverpa zea populations persist year-round in tropical and subtropical regions, but seasonal migrations into temperate zones increase the geographic range of associated crop damage. To better understand the genetic basis of these physiological and ecological characteristics, we generated a high-quality chromosome-level assembly for a single H. zea male from Bt-resistant strain, HzStark_Cry1AcR. Hi-C data were used to scaffold an initial 375.2 Mb contig assembly into 30 autosomes and the Z sex chromosome (scaffold N50 = 12.8 Mb and L50 = 14). The scaffolded assembly was error-corrected with a novel pipeline, polishCLR. The mitochondrial genome was assembled through an improved pipeline and annotated. Assessment of this genome assembly indicated 98.8% of the Lepidopteran Benchmark Universal Single-Copy Ortholog set were complete (98.5% as complete single copy). Repetitive elements comprised approximately 29.5% of the assembly with the plurality (11.2%) classified as retroelements. This chromosome-scale reference assembly for H. zea, ilHelZeax1.1, will facilitate future research to evaluate and enhance sustainable crop production practices.