Joseph Felsenstein is Professor in the Departments of Genome Sciences and Biology and Adjunct Professor in the Departments of Computer Science and Statistics at the University of Washington in Seattle. He is best known for his work on phylogenetic inference, and is the author of Inferring Phylogenies, and principal author and distributor of the package of phylogenetic inference programs called PHYLIP, and is currently serving as the President of the Society for Molecular Biology & Evolution.

You can reach Joe at president.smbe@gmail.com

James McInerney is the principle investigator of the Bioinformatics and Molecular Evolution Laboratories at NUI Maynooth. He was one of the founding directors of the Irish Centre for High End Computing, an Associate Editor of Molecular Biology and Evolution, Biology Direct, and Journal of Experimental Zoology, and is currently serving as the Secretary for the Society for Molecular Biology and Evolution.

You can reach James at secretary.smbe@gmail.com

Juliette de Meaux is interested in the molecular basis of Darwinian adaptation in natural plant systems. Her works combines the approaches of population, quantitative and molecular genetics to dissect the underpinning of adaptive changes. She completed her PhD at AgroParisTech, under the supervision of Prof. Claire Neema and studied the molecular basis of host-pathogen coevolution in natural populations of common bean. She then spent her Postdoc time in the lab of Prof. Tom Mitchell-Olds at the Max Planck Institute of Chemical Ecology in Jena and worked on the evolution of cis-regulatory DNA. Since 2005, she runs her own lab, first at the Max Planck Institute of Plant Breeding in Cologne and then at the University of Münster. In January 2015, she relocated her lab at the University of Cologne. She is currently serving as the Treasurer for the Society for Molecular Biology and Evolution.

You can reach Juliette at treasurer.smbe@gmail.com

Login

Username:
Password:
Forgot username/password?

Registration and Membership

Non-Members: You must Register for an account to purchase a membership and conduct other transactions. Future visits to the website will only require login.

After login or registration: You may conduct online transactions such as joining or renewing a membership, registering for an annual meeting and making donations.

Events Calendar

Check out our Events Calendar
for upcoming meetings. 

If you have an event you wish to add,
just email it to secretary.smbe@gmail.com

About

The Society for Molecular Biology and Evolution is an international organization whose goals are to provide facilities for association and communication among molecular evolutionists and to further the goals of molecular evolution, as well as its practitioners and teachers. In order to accomplish these goals, the Society publishes two peer-reviewed journals, Molecular Biology and Evolution and Genome Biology and Evolution. The Society sponsors an annual meeting, as well as smaller satellite meetings or workshop on important, focused, and timely topics. It also confers honors and awards to students and researchers.

SMBE 2017

On behalf of the organising committee it is our pleasure to invite you to attend SMBE 2017 - the annual meeting of the Society for Molecular Biology and Evolution. SMBE 2017 will be held from the 2nd-6th of July at the JW Marriott in Austin, TX, USA. The meeting - including plenary talks, symposia presentations, the Walter Fitch symposium, and poster sessions - will showcase the latest research in genomics, population genetics, and molecular biology and evolution. Social activities will include an opening reception, mixers with each poster session, and a conference dinner. We’re looking forward to seeing you in Austin this summer!

More information can be found HERE

Featured News and Updates

Tenure Track Assistant Professorship in Molecular Systems Biology

Tenure Track Assistant Professorship in Molecular Systems Biology

The Molecular Cell Biology unit and Quantitative and Systems Biology graduate group at UC Merced invite applications for an Assistant Professor (tenure-track) position from exceptional candidates in the field of Molecular Systems Biology. We seek experimental biologists who make technically innovative, theory-driven, high-dimensional measurements of whole cells...

Continue Reading →


  • Tuesday, May 06, 2014
  • Comments (2)

Satellite Meeting on Reticulated Microbial Evolution

Lateral gene transfer (LGT) is the process by which prokaryotes acquire DNA across wide taxonomic boundaries and incorporate it into their genome. Accumulating evidence shows that LGT, a distinctly non tree-like evolutionary process, plays a major role in prokaryote evolution.

Continue Reading →


  • Thursday, December 19, 2013
  • Comments (0)

Postdoc: Computational Analysis of Genome Rearrangement (Princeton/USF)

University of South Florida (USF), joint with Princeton University

Postdoctoral Research Associate position is available immediately in the Department of Mathematics and Statistics at USF with focus on mathematical models and computational studies of DNA recombination, rearrangement, epigenetics, and non-coding RNA. This position will hold a joint appointment in the Department of Ecology & Evolutionary Biology at Princeton University.

Continue Reading →


  • Thursday, October 31, 2013
  • Comments (0)

ASSISTANT PROFESSORSHIP QUANTITATIVE EVOLUTIONARY GENETICS or EVOLUTIONARY GENOMICS

Princeton University's Department of Ecology & Evolutionary Biology and the Lewis-Sigler Institute for Integrative Genomics seek to jointly hire a tenure-track Assistant Professor focusing on Evolutionary and Quantitative Biology. Sample areas might include, but are not limited to: molecular/genome evolution, population genomics, evolution of development, behavioral genetics, experimental evolution, microbial evolution of prokaryotes or eukaryotes, epigenetics, metagenomics, and/or quantitative genetics, using traditional and/or emerging model systems (though the specific model system is less important than the nature of the questions being addressed). We seek applicants who pursue research that aims for significant conceptual integration across traditional disciplinary boundaries. We likewise seek colleagues who will enthusiastically contribute to a climate that embraces both excellence and diversity, and who share our commitment to a mentoring process that advances EEB, LSI and the university, and that attracts and retains students of all ethnicities, nationalities, and genders.

Continue Reading →


  • Thursday, October 31, 2013
  • Comments (0)

Faculty Position in Quantitative Evolution or Ecology

Michigan State University

The interdisciplinary graduate program in Ecology, Evolutionary Biology & Behavior (EEBB) at Michigan State University (MSU) is seeking applications for a tenure-system Assistant Professor faculty position in evolution or ecology.The successful applicant will be able to demonstrate expertise and leadership in the study of fundamental questions in ecology, evolutionary biology, and/or behavior, to establish an externally-funded research program that supports graduate training, and to make significant contributions to both graduate and undergraduate teaching. Special consideration will be given to applicants who integrate empirical study of biological systems with cutting edge computational and quantitative methods. A competitive start-up and compensation package will be offered according to the applicant’s experience and qualifications.  MSU has additional resources, as part of an Excellence Hiring Initiative, to recruit exceptional candidates at the Associate and Full Professor levels.

Continue Reading →


  • Thursday, October 10, 2013
  • Comments (0)

Call for Symposia for SMBE 2014

Dear Colleague,

The Society for Molecular Biology & Evolution is now accepting proposals for symposium topics for the 2014 Annual Meeting, taking place in San Juan Puerto Rico, June 8th - 12th 2014.

Continue Reading →


  • Thursday, September 26, 2013
  • Comments (0)

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

2017-06-02

2017-06-02

2017-06-02

2017-06-02

From Chimps to Humans to Cold Sore Cousin Mixing Before Worldwide Spread

2017-05-11

Honing in on Culprit behind Fleece Variation in Domesticated Sheep

2017-05-08

2017-05-08

An Expanded History of Life on Earth at Your Fingertips

2017-05-08

Speciation and Genome Evolution in the Symbionts of Hominid Lice

2017-04-14

2017-04-13

2017-04-06

A Resource for Timelines, Timetrees, and Divergence Times

2017-04-06

2017-04-05

A Markov Clustering Approach to Study Population Genetic Structure

2017-04-05

2017-04-04

2017-04-04

2017-04-03

2017-04-03

2017-03-29

2017-03-28

2017-03-28

2017-03-27

2017-03-23

2017-03-21

2017-03-20

Eight Fast-Evolving Megacircles

2017-03-16

2017-03-15

New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region

2017-03-15

2017-03-13

2017-03-13

2017-03-01

the polycystine radiolarian Lithomelissa setosa (Nassellaria) and Sticholonche zanclea (Taxopodida). A phylogenomic approach using 255 genes finds Radiolaria and Foraminifera as separate monophyletic groups (together as Retaria), while Cercozoa is shown to be paraphyletic where Endomyxa is sister to Retaria. Analysis of the genetic components of the cytoskeleton and mapping of the evolution of these on the revised phylogeny of Rhizaria reveal lineage-specific gene duplications and neofunctionalization of α and β tubulin in Retaria, actin in Retaria and Endomyxa, and Arp2/3 complex genes in Chlorarachniophyta. We show how genetic innovations have shaped cytoskeletal structures in Rhizaria, and how single cell transcriptomics can be applied for resolving deep phylogenies and studying gene evolution in uncultured protist species.

GBE | Most Read

Genome Biology & Evolution

Extreme Mitogenomic Variation in Natural Populations of Chaetognaths

2017-06-14

Abstract
The extent of within-species genetic variation across the diversity of animal life is an underexplored problem in ecology and evolution. Although neutral genetic variation should scale positively with population size, mitochondrial diversity levels are believed to show little variation across animal species. Here, we report an unprecedented case of extreme mitochondrial diversity within natural populations of two morphospecies of chaetognaths (arrow worms). We determine that this diversity is composed of deep sympatric mitochondrial lineages, which are in some cases as divergent as human and platypus. Additionally, based on 54 complete mitogenomes, we observed mitochondrial gene order differences between several of these lineages. We examined nuclear divergence patterns (18S, 28S, and an intron) to determine the possible origin of these lineages, but did not find congruent patterns between mitochondrial and nuclear markers. We also show that extreme mitochondrial divergence in chaetognaths is not driven by positive selection. Hence, we propose that the extreme levels of mitochondrial variation could be the result of either a complex scenario of reproductive isolation, or a combination of large population size and accelerated mitochondrial mutation rate. These findings emphasize the importance of characterizing genome-wide levels of nuclear variation in these species and promote chaetognaths as a remarkable model to study mitochondrial evolution.

Unraveling the Population History of Indian Siddis

2017-06-14

Abstract
The Siddis are a unique Indian tribe of African, South Asian, and European ancestry. While previous investigations have traced their ancestral origins to the Bantu populations from subSaharan Africa, the geographic localization of their ancestry has remained elusive. Here, we performed biogeographical analysis to delineate the ancestral origin of the Siddis employing an admixture based algorithm, Geographical Population Structure (GPS). We evaluated the Siddi genomes in reference to five African populations from the 1000 Genomes project, two Bantu groups from the Human Genome Diversity Panel (HGDP) and five South Indian populations. The Geographic Population Structure analysis localized the ancestral Siddis to Botsawana and its present-day northeastern border with Zimbabwe, overlapping with one of the principal areas of secondary Bantu settlement in southeast Africa. Our results further indicated that while the Siddi genomes are significantly diverged from that of the Bantus, they manifested the highest genomic proximity to the North-East Bantus and the Luhyas from Kenya. Our findings resonate with evidences supporting secondary Bantu dispersal routes that progressed southward from the east African Bantu center, in the interlacustrine region and likely brought the ancestral Siddis to settlement sites in south and southeastern Africa from where they were disseminated to India, by the Portuguese. We evaluated our results in the light of existing historical, linguistic and genetic evidences, to glean an improved resolution into the reconstruction of the distinctive population history of the Siddis, and advance our knowledge of the demographic factors that likely contributed to the contemporary Siddi genomes.

The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses?

2017-06-14

Abstract
Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene’s transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different “life cycle” stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.