SMBE Council

Laura Landweber, President

Departments of Biochemistry & Molecular Biophysics and Biological Sciences

Columbia University, New York, NY 10032

Laura.Landweber@columbia.edu

 

Bill Martin, President-Elect (& Editor-in-chief, Genome Biology and Evolution)

Institut for Molecular Evolution

Heinrich-Heine-Universität, Universitätsstr.1, 40225 Düsseldorf, Germany

bill@hhu.de

 

George Zhang, Past-President

Department of Ecology and Evolutionary Biology

University of Michigan, Natural Science Bldg, 830 N University, Ann Arbor, MI 48109

jianzhi@umich.edu

 

David Pollock, Secretary

Department of Biochemistry and Molecular Genetics

University of Colorado Anschutz Medical Campus, Building 500, 13001 E. 17th Place, Campus Box C290, Aurora, CO 80045

secretary.smbe@gmail.com

 

Juliette de Meaux, Treasurer

Institute of Botany

University of Cologne, Zulpicher str. 47b, D-50674 Cologne, Germany

treasurer.smbe@gmail.com

 

Kateryna Makova, Councillor (2015-2017)

Department of Biology

Director, Center for Medical Genomics, Pennsylvania State University

310 Wartik Lab, University Park, PA 16802

kmakova@bx.psu.edu

 

Emma Teeling, Councillor (2015-2017)

School Of Biology & Environment Science

Science Centre – West, Belfield, Dublin 4, Ireland

emma.teeling@ucd.ie

 

Maud Tenaillon, Councillor (2016–2018)

Quantitative Genetics and Evolution - Le Moulon INRA

University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay F-91190, Gif-sur-Yvette, France

tenaillon@moulon.inra.fr

 

Adam Eyre-Walker, Councillor (2016–2018)

School of Life Sciences

University of Sussex, Brighton, BN1 9QG, United Kingdom

a.c.eyre-walker@sussex.ac.uk

 

Joanna Masel, Councillor (2017-2019)

Department of Ecology & Evolutionary Biology

University of Arizona, Tucson, AZ 85721

masel@u.arizona.edu

 

Jay Storz, Councillor (2017-2019)

School of Biological Sciences

University of Nebraska, Lincoln, NE 68588

jstorz2@unl.edu

 

Sudhir Kumar, ex officio (Editor-in-chief, Molecular Biology and Evolution)

Intitute for Genomics & Evolutionary Medicine (iGEM)

Department of Biology, Temple Univeristy, 1925 N. 12th St, Philadelphia, PA 19122

s.kumar@asu.edu


SMBE Past Councils

Year President President-Elect Past-President Secretary Treasurer Councillors Ex Officio Councillors 
 2016 George Zhang Laura Landweber Joe Felsenstein
James McInerney
Juliette de Meaux
  • Maud Tenaillon
  • Adam Eyre-Walker
  • Sandra Baldauf
  • David Liberles
  • Emma Teeling
  • Kateryna Makova

  • Sudhir Kumar
  • Bill Martin

2015 Joe Felsenstein George Zhang Brandon Gaut James McInerney  Juliette de Meaux  

  • Marta Wayne
  • Harmit Malik
  • Sandra Baldauf
  • David Liberles
  • Emma Teeling
  • Kateryna Makova


Marta Wayne
Harmit Malik
Sandra Baldauf
David Liberles
Emma Teeling 
Katerina Makova
Marta Wayne
Harmit Malik
Sandra Baldauf
David Liberles
Emma Teeling 
Katerina Makova

  • Sudhir Kumar
  • Bill Martin


2014 Brandon Gaut Joe Felsenstein Sudhir Kumar James McInerney Aoife McLysaght
  • Laurent Duret
  • Yoko Satta
  • Marta Wayne
  • Harmit Malik
  • Sandra Baldauf
  • David Liberles
 
2013 Sudhir Kumar Brandon Gaut Charles Aquadro James McInerney Aoife McLysaght
  • Soojin Yi
  • Laurent Duret
  • Yoko Satta
  • Marta Wayne
  • Harmit Malik
 
2012 Charles Aquadro Sudhir Kumar Ken Wolfe Manyuan Long Aoife McLysaght
  • Robin Bush
  • Soojin Yi
  • Laurent Duret
  • Yoko Satta
 
2011 Ken Wolfe Charles Aquadro Jody Hey Manyuan Long John Archibald
  • Dan Graur
  • Robin Bush
  • Soojin Yi
 
2010 Jody Hey Ken Wolfe Michael Lynch Manyuan Long John Archibald
  • Ziheng Yang
  • Dan Graur
  • Robin Bush
 
2009 Michael Lynch Jody Hey Paul Sharp George Zhang John Archibald
  • Laura Landweber
  • Ziheng Yang
  • Dan Graur
 
2008 Paul Sharp Michael Lynch Deborah Charlesworth George Zhang Marta L. Wayne
  • Charles Aquadro
  • Laura Landweber
  • Ziheng Yang
 
2007 Deborah Charlesworth Paul Sharp Montserrat Aguade George Zhang Marta L. Wayne
  • Michael Lynch
  • Charles Aquadro
  • Laura Landweber
 
2006 Montserrat Aguade Deborah Charlesworth Jeffrey R. Powell Sudhir Kumar Marta L. Wayne
  • Laura Katz
  • Michael Lynch
  • Charles Aquadro
 
2005 Jeffrey R. Powell Montserrat Aguade John C. Avise Sudhir Kumar Marta L. Wayne
  • Jody Hey
  • Laura Katz
  • Michael Lynch
 
2004 John C. Avise Jeffrey R. Powell Naoyuki Takahata Sudhir Kumar Marta L. Wayne
  • Brian Golding
  • Jody Hey
  • Laura Katz
 
2003 Naoyuki Takahata John C. Avise Michael T. Clegg Marcy K. Uyenoyama Marta L. Wayne
  • Howard Ochman
  • Brian Golding
  • Jody Hey
 
2002 Michael T. Clegg Naoyuki Takahata Daniel L. Hartl Marcy K. Uyenoyama Richard C. Hudson
  • Montserrat Aguade
  • Howard Ochman
  • Brian Golding
 
2001 Daniel L. Hartl Michael T. Clegg Wen-Hsiung Li Marcy K. Uyenoyama Richard C. Hudson
  • Tomoko Ohta
  • Montserrat Aguade
  • Howard Ochman
 
2000 Wen-Hsiung Li Daniel L. Hartl Andrew G. Clark Marcy K. Uyenoyama Richard C. Hudson
  • Pekka Pamilo
  • Tomoko Ohta
  • Montserrat Aguade
 
1999 Andrew G. Clark Wen-Hsiung Li Richard C. Lewontin Marcy K. Uyenoyama Richard C. Hudson
  • Wilfred W. de Jong
  • Pekka Pamilo
  • Tomoko Ohta
 
1998 Richard C. Lewontin Andrew G. Clark David Penny Linda D. Strausbaugh Richard C. Hudson
  • W. Ford Doolittle
  • Wilfred W. de Jong
  • Pekka Pamilo
 
1997 David Penny Richard C. Lewontin Margaret G. Kidwell Linda D. Strausbaugh Richard C. Hudson
  • Maryellen Ruvolo
  • W. Ford Doolittle
  • Wilfred W. de Jong
 
1996 Margaret G. Kidwell David Penny Wesley M. Brown Linda D. Strausbaugh Richard C. Hudson
  • Ross A. Crozier
  • Maryellen Ruvolo
  • W. Ford Doolittle
 
1995 Wesley M. Brown Margaret G. Kidwell Masatoshi Nei Linda Maxson Richard C. Hudson
  • Ross A. Crozier
  • Maryellen Ruvolo
 
1994 Masatoshi Nei Wesley M. Brown Walter M. Fitch Linda Maxson Linda Maxson Ross A. Crozier  
1993 Walter M. Fitch Masatoshi Nei Linda Maxson Linda Maxson Caro-Beth Stewart  

@OfficialSMBE Feed

MBE | Most Read

Molecular Biology and Evolution

2017-11-22

2017-11-22

2017-11-22

2017-11-22

2017-09-05

2017-08-30

2017-08-24

2017-07-05

GBE | Most Read

Genome Biology & Evolution

RAD-Seq Reveals Patterns of Additive Polygenic Variation Caused by Spatially-Varying Selection in the American Eel ( Anguilla rostrata )

2017-11-10

Abstract
The American Eel (Anguilla rostrata) has an exceptional life cycle characterized by panmictic reproduction at the species scale, random dispersal, and selection in a highly heterogeneous habitat extending from subtropical to subarctic latitudes. The genetic consequences of spatially-varying selection in this species have been investigated for decades, revealing subtle clines in allele frequency at a few loci that contrast with complete panmixia on the vast majority of the genome. Because reproduction homogenizes allele frequencies every generation, sampling size, and genomic coverage are critical to reach sufficient power to detect selected loci in this context. Here, we used a total of 710 individuals from 12 sites and 12,098 high-quality single nucleotide polymorphisms to re-evaluate the extent to which local selection affects the spatial distribution of genetic diversity in this species. We used environmental association methods to identify markers under spatially-varying selection, which indicated that selection affects ∼1.5% of the genome. We then evaluated the extent to which candidate markers collectively vary with environmental factors using additive polygenic scores. We found significant correlations between polygenic scores and latitude, longitude and temperature which are consistent with polygenic selection acting against maladapted genotypes in different habitats occupied by eels throughout their range of distribution. Gene functions associated with outlier markers were significantly enriched for the insulin signaling pathway, indicating that the trade-offs inherent to occupying such a large distribution range involve the regulation of metabolism. Overall, this study highlights the potential of the additive polygenic scores approach in detecting selective effects in a complex environment.

Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing

2017-10-31

Abstract
Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa.

Legionella Becoming a Mutualist: Adaptive Processes Shaping the Genome of Symbiont in the Louse Polyplax serrata

2017-10-23

Abstract
Legionellaceae are intracellular bacteria known as important human pathogens. In the environment, they are mainly found in biofilms associated with amoebas. In contrast to the gammaproteobacterial family Enterobacteriaceae, which established a broad spectrum of symbioses with many insect taxa, the only instance of legionella-like symbiont has been reported from lice of the genus Polyplax. Here, we sequenced the complete genome of this symbiont and compared its main characteristics to other Legionella species and insect symbionts. Based on rigorous multigene phylogenetic analyses, we confirm this bacterium as a member of the genus Legionella and propose the name Candidatus Legionella polyplacis, sp.n. We show that the genome of Ca. Legionella polyplacis underwent massive degeneration, including considerable size reduction (529.746 bp, 484 protein coding genes) and a severe decrease in GC content (23%). We identify several possible constraints underlying the evolution of this bacterium. On one hand, Ca. Legionella polyplacis and the louse symbionts Riesia and Puchtella experienced convergent evolution, perhaps due to adaptation to similar hosts. On the other hand, some metabolic differences are likely to reflect different phylogenetic positions of the symbionts and hence availability of particular metabolic function in the ancestor. This is exemplified by different arrangements of thiamine metabolism in Ca. Legionella polyplacis and Riesia. Finally, horizontal gene transfer is shown to play a significant role in the adaptive and diversification process. Particularly, we show that Ca. L. polyplacis horizontally acquired a complete biotin operon (bioADCHFB) that likely assisted this bacterium when becoming an obligate mutualist.

The Diversification of Zika Virus: Are There Two Distinct Lineages?

2017-10-23

Zika virus (ZIKV) has caused explosive epidemics in the Pacific and the Americas, posing a serious threat to public health. Conventional opinion advocates that ZIKV evolved into two distinct lineages, namely, African and Asian. Descendants of this latter lineage dispersed globally causing major epidemics. However, based on shared amino acid replacements and phylogenetic analyses, it was recently contentiously proposed that the Asian lineage was a direct descendant of the African lineage. To address this contentious issue, we reconstructed a phylogenetic tree of ZIKV using the method based on shared amino acid replacements and found that ZIKV evolved into two distinct lineages. This supports the conventional phylogenetic divergence pattern of ZIKV. Evidence of recombination and sequencing errors was identified among the large collection of ZIKV. As such problematic sequences could confound the phylogenetic analyses, they were removed. Bayesian phylogenetic analyses using the improved sequence data enabled estimates for the divergence time in the past of the African and Asian lineages of ∼180 years ago. Moreover, we found that the Asian lineage viruses did not evolve at an elevated rate. Our findings provide additional support for the conventional opinion that the Asian lineage of ZIKV diverged from the African lineage.